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Simplicity is the ultimate sophistication

Leonardo da Vinci (1452–1519)





Preface

Part I of this monograph is concerned with the theoretical, analytical as well as nu-
merical prediction of field-induced dynamics and structure for simple models de-
scribing soft matter. It presents selected results and demonstrates ranges of applica-
tions for the methods described in Part II. Special emphasis is placed on the finitely
extendable nonlinear elastic (FENE) chain models for polymeric liquids, their dy-
namical and rheological behavior and the description of their inherently anisotropic
material properties by means of deterministic and stochastic approaches. A number
of representative examples are given on how simple (but high-dimensional) models
can be implemented in order to enable the analysis of the microscopic origins of the
dynamical behavior of polymeric materials. These examples are shown to provide
us with a number of routes for developing and establishing low-dimensional mod-
els devoted to the prediction of a reduced number of significant material properties.
Concerning the types of complex fluids, we cover the range from flexible polymers in
melts and solutions, wormlike micelles, actin filaments, rigid and semiflexible mole-
cules in flow-induced anisotropic, and also liquid crystalline phases. Fokker–Planck
equations and molecular and brownian dynamics computer simulation methods are
involved to formulate and analyze the model fluids.

Part II allows the reader to redo simulations and motivates for further investiga-
tion of polymeric and anisotropic fluids. It contains computational recipes for devis-
ing simulation methods and codes, including Monte Carlo, molecular and brownian
dynamics (written in Mathwork’s Matlab, thus allowing for simple visualization and
animation). A special chapter on isotropic and irreducible tensors allows for com-
fortable conversion between stochastic differential equations, tensorial balances, and
equations for coefficients, including the testing of closure approximations. We ex-
plicitly derive coupled equations for alignment tensors for arbitrary tensor fields
suitable for nth order approximations strictly valid close to equilibrium, and also
highly anisotropic states.

Switzerland Martin Kröger
March, 2005 ETH Zürich
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Part I

Illustrations & Applications





1

Simple Models for Polymeric and Anisotropic Liquids

We hope that the complexity of the world is neither in contrast with the simplicity
of the basic laws of physics [1] nor with the simple physical models to be reviewed
or proposed in the following. However, physical phenomena occurring in complex
materials cannot be encapsulated within a single numerical paradigm. In fact, they
should be described within hierarchical, multi-level numerical models in which each
sub-model is responsible for different spatio-temporal behavior and passes out the
averaged parameters to the model, which is next in the hierarchy (Fig. 1.1). Poly-
meric liquids far from equilibrium belong to the class of anisotropic liquids.1 This
monograph is devoted to the understanding of the anisotropic properties of polymeric
and complex fluids such as viscoelastic and orientational behavior of polymeric liq-
uids, the rheological properties of ferrofluids and liquid crystals subjected to external
fields, based on the architecture of their molecular constituents. The topic is of con-
siderable concern in basic research for which models should be as simple as possible,
but not simpler. Certainly, it is also of technological relevance. Statistical physics and
nonequilibrium thermodynamics are challenged by the desired structure-property re-
lationships. Experiments such as static and dynamic light and neutron scattering, par-
ticle tracking, flow birefringence etc. together with rheological measurements have
been essential to adjust or test basic theoretical concepts, such as a ‘linear stress-
optic rule’ which connects orientation and stress, or the effect of molecular weight,
solvent conditions, and external field parameters on shape, diffusion, degradation,
and alignment of molecules.

During the last decade the anlaysis of simple physical particle models for com-
plex fluids has developed from the molecular computation of basic systems (atoms,
rigid molecules) to the simulation of macromolecular ‘complex’ system with a large
number of internal degrees of freedom exposed to external forces. This monograph
should be in certain aspects complementary to others. The foundations of molecular

1 Greek: an (non) iso (equal) trop (to turn): Anisotropic materials exhibit properties with
different values when measured in different directions. Material properties are rotation-
invariant, usually either due to boundary conditions, anisotropic applied external fields, or
the presence of nonspherical constituents.

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 3–11 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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> 10 µm
> 0.1 s

0.1-10 µm
0.01-1 s

1-50 nm
10-10000 ns

decrease of
time and 

length scales

0.1-0.5 nm
1 ps

Fig. 1.1. Time and length scales of a typical polymer problem. In this review we are con-
cerned with micro- and mesoscopic models (framed) which aim to describe physical behav-
ior beyond equilibrium, beyond chemical details (bottom), and may be implemented into the
macro-computation of complex flows (top)

and brownian dynamics methods for simple microscopic models for macromolec-
ular systems have been extensively revisited [2]. Multiscale simulation in polymer
science with special emphasis on coarse-grained models (incl. a soft-ellipsoid model)
has been recently reviewed by Kremer and Muller–Plathe [3]. In the light of modern
reviews on physical micro- and mesoscopic models to be mentioned below our focus
is placed onto aspects which have been less extensively considered. Upon these are,
in part 1 of this monograph, orientation and entanglement effects, the implications
of stretchability, flexibilty, order parameters, scission and recombination on material
properties of anisotropic, dilute and concentrated polymeric bulk fluids in the pres-
ence of macroscopic flow and electromagnetic fields. Part is an attempt to collect
the minimum amount of information to implement and develop analytic theory and
computational tools.

In part 1 this monograph is first of all concerned with the applicability and suit-
ability of bead-spring multi chain models which incorporate finite extensibility of
segments (so called FENE models, cf. Page ), molecular architecture and flexi-
bility, and capture topological interactions. Second, it aims to give an overview about
the range of applications of simple mesoscopic theories, in particular primitive path
models and elongated particle models, where topological aspects are either approx-
imatly treated or disregarded. In view of a rapidly growing amount of research and
number of publications on these topics, we try to present a balanced selection of

II

2 .3 .0



1 Simple Models for Polymeric and Anisotropic Liquids 5

simple, representative examples, connect them with related research, and thereby get
in touch with a large – still not exhaustive – number of classical and modern ap-
proaches. In order to keep the monograph short, we do not summarize basic know-
ledge available from standard text books. We therefore do not provide an introduc-
tion to the the theory of stochastic differential equations, the statistical physics of
simple, molecular, and macromolecular liquids, linear response theory, rheology, or
experimental methods. We are going to cite the relevant original literature where im-
plementation details can be found. However, Part II of this monograph provides the
reader with the basic ingredients needed to devise a simulation scheme and to derive
equations of change for moments for a given model. In particular, it contains sample
codes for various applications.

The existence of universality classes is significant for the theoretical descrip-
tion of polymeric complex fluids. Any attempt made at modeling polymer properties
might expect that a proper description must incorporate the chemical structure of
the polymer into the model, since this determines its microscopic behavior. Thus a
detailed consideration of bonds, sidegroups, etc. may be envisaged. However, the
universal behavior that is revealed by experiments suggests that macroscopic prop-
erties of the polymer are determined by a few large scale properties of the polymer
molecule. Structural details may be ignored even for microscopic (beyond-atomistic)
models since at length scales in the order of nanometers, different polymer molecules
become equivalent to each other, and behave in the same manner. This universal be-
havior justifies the introduction of crude mechanical models, such as bead-spring
chain models, to represent real polymer molecules (Fig. 1.2).

The FENE chain model and its variations can be considered as a maximum
coarse-grained, still brute force simulation model to the physical properties of poly-
meric fluids. These models didn’t fail to describe rheooptical material properties
quite satisfactory when solved without approximation, but are often numerically ex-
pensive while conceptually simple. FENE chains constitute the appropriate level of
description in order to test polymer kinetic theory [4, 5], and assumptions made to
simplify their analysis. This monograph discusses several realizations in detail, and
hopes to stimulate for advanced treatments, therefore disregards many others (FENE
chain models for star polymers, co-polymers, polymer blends, brushes, polyelec-
trolytes, in order to mention a few).

The dynamics of a single, fluorescing, DNA macromolecule held at one end by
‘optical tweezers’ and subjected to a uniform flow was successfully compared with
simulations [6] of a FENE chain that accounted for the molecule’s entropic elasticity,
brownian motion, and hydrodynamic drag. Using self-diffusion data and analytical
expressions to obtain this drag in the limits of the undeformed coil and of the fully
stretched thread, these results once more confirmed the success of the FENE chain
model in predicting the rheological properties of simple polymeric systems. Excel-
lent agreement between the theoretical predictions based on the FENE models and
data from experimentation indicated that the model also seemed able [7] to interpret
the underlying physical mechanisms for the dynamics of polymer solutions [8–10],
melts [11–13], copolymer melts [14, 15], brushes [16] not only in the qiescent state,
but also subjected to flow fields [7,8,17–26]. During the last decade, the FENE chain
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Fig. 1.2. Simple microscopic models for complex fluids with increasing level of abstraction
and decreasing degrees of freedom (lhs, bottom to top), and their sketched range of application:
(a) Atomstically detailed polymer which accounts for anisotropic intermolecular interactions
incl. entanglements, (b) coarse grained model via a mapping (Sect. 8.10.1) to a ‘primitive
path’, (c) further approximated by a multibead (nonlinear FENE) chain, (d) further coarse-
grained to a (FENE) dumbbell which accounts for entropic elasticity and orientation but not
for entanglement effects, and (e) ellipsoids of revolution – incl. rigid rods, dissipative par-
ticles, with spherical or mean-field interaction. Models must meet the requirement of being
thermodynamically admissible

model has been extended to incorporate the effect of scission, recombination (FENE-
C) and branching of chains in order to investigate the formation and development of
complex micellar systems and networks [14, 27–30], cf. Fig. 1.3. The model has
been further extended (FENE-B) to incorporate semiflexibility of chains [31–34],
and studied in confined geometries. To give an overview about the range of applica-
bility of the sufficiently detailed and simple microscopic models, we restrict ourself
to the formulation and analysis of models for particulate fluids and validate them
against experimental data.

The nomenclature given at Page 203 is recommended in order make the search
for results obtained for extensions of the original FENE dumbbell more com-
fortable. Actually, the most complete summary of the various ‘analytic’ FENE
models may be found in [35]. Configuration tensor models such as the FENE-P and
more general quasi-linear models (Johnson-Segalman, Gordon-Schowalter, Phan-
Thien/Tanner etc.) have been also developed in a fully nonisothermal setting [36–38].
NEMD together with a dissipative particle dynamics (DPD) thermostat had been suc-
cessfully applied to study the shear-induced alignment transition of diblock copoly-
mer melts, surfactants and liquid crystals in a large-scale system [14], based on an ef-
fective simplified continuum model for FENE dumbbells [39] biased towards phase
separation. Simplified versions of FENE chain models neglect flexibility or finite
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FENE-B FENE-C

FENE-3

FENE

FENE

SOLVENT

Fig. 1.3. Simple FENE models for a range of macromolecular fluids to be treated in a uni-
fied fashion: with/without solvent (simple fluid) for linear/star/branched, flexible/semiflexible,
bulk/confined/tethered, non-/breakable macromolecules, cf. Table 14.1. Charged, tethered
polymers have been excluded from the review since an excellent review is available in this
series [40]

extensibilty and have been widely used. Rigid elongated particles further neglect
stretchability. Models dealing with these objects will be reviewed in certain detail
as long as the simplified description turns out to be appropriate (unentangled: di-
lute polymers, rigid molecules: liquid crystals). Some space will be reserved for the
discussion on the connection between the different levels of description, projection
operators, coarse-graining procedures, and the theory of nonequilibrium thermody-
namics which sets a framework for simple physical models.

1.1 Section-by-Section Summary

Part I

Chapter 2: In the quiescent state, polymers in dilute solution should have
negligible interactions with each other on purely geometrical grounds, in contrast to
semi-dilute or concentrated solutions and melts. The flow behavior of polymer solu-
tions is, however, more complex than that of the familiar Newtonian fluids. Within
these solutions shear thinning and the Weissenberg effect [4] are typical phenom-
ena of technological importance. These effects are found to be strongly correlated
with flow-induced conformational changes of the dissolved polymer chains and they
can be dramatic in dilute solutions. Orientation and deformation of chain molecules
can, and has been measured in flow birefringence light scattering and neutron scat-
tering experiments (for methods and references see [41]), and via computer simula-
tion [42–45]. For a review on molecular orientation effects in viscoelasticity we refer
to [46]. For this introductory section we will be concerned with approximate solu-
tions for FENE dumbbells (with N = 2 beads) in the infinitely dilute and semi-dilute
regimes.

Chapter 3 is next on the hierarchy and treats multibead chains (N > 2
beads) in dilute solutions. We start from a stochastic approach to polymer kinetic
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theory. The model takes into account configuration-dependent hydrodynamic inter-
action (HI) and simplifies to the Zimm bead-spring chain model in the case of preav-
eraged HI, for which parameter-free ‘universal ratios’ such as the ratio between ra-
dius of gyration and hydrodynamic radius are known. The Chebyshev polynomial
method and a variance reduction simulation technique [47] are revisited to imple-
ment an efficient NEBD simulation. The full dependence of several characteristic
ratios vs. both chain length and hydrodynamic interaction parameter is resolved, and
compared with analytical and experimental results. Polymer solutions under good
solvent conditions have been also studied extensively via NEMD by taking into ac-
count explicit solvent particles, e.g., in [42–45, 48]. In that case, hydrodynamic in-
teractions and excluded volume are incorporated through momentum transfer and a
WCA potential between beads, respectively.

Chapter 4 demonstrates insights obtained by NEMD into the
microscopic origin of the nonlinear viscoelastic properties of (dense) polymer melts
by using a FENE chain model. Stress-strain relationships for polymer melts are the
main requirement for the conventional flow simulation of polymer processing, useful
in modelling industrial applications including injection moulding, film blowing, and
extrusion. The reliability and accuracy of such simulations depends crucially on the
constitutive equations. Although closed-form phenomenological models have been
widely used in research and commercial codes, their degree of success is limited
because of a lack of physical ingredient on the molecular level. For the purpose of
realistic modelling, and further development of semiempirical constitutive equations,
full FENE chain models are shown to be uniquely suited.

Chapter 5 extends the FENE chain system in several direc-
tions. We offer explicit examples of recently established models: wormlike micellar
systems modelled by a FENE-C potential, model liquid crystals composed of semi-
flexible FENE chains, as well as a model for semiflexible (FENE-B, actin) filaments
and networks. Results for the models are obtained by NEMD or NEBD, though we
will also discuss analytic descriptions that are able to guide the interpretation of im-
portant aspects of the results.

Chapter 6 offers illustrative examples on how to formu-
late and handle kinetic model equations for primitive paths (coarse-grained atom-
istic chains) by approximate analytical or ‘exact’ numerical treatments. The role of
topological interactions is particularly important, and has given rise to a successful
theoretical framework: the ‘tube model’. Progress over the last 30 years had been
reviewed in the light of specially-synthesized model materials, an increasing palette
of experimental techniques, simulation and both linear and nonlinear rheological re-
sponse in [5]. Here we review a selected number of improved versions of primitve
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path models which allow to discuss the effect of approximations on the linear and
nonlinear rheological behavior of polymer melts. Brute force FENE chain simulation
results summarized in the preceeding chapters are used to test the assumptions made
in the formulation of these kinetic models.

Chapter 7 deals with elongated particle models. There are many
early approaches in the literature to the modelling of fluids with simple microstruc-
ture. For example, equations for suspensions of rigid particles have been calculated
by averaging the detailed motion of the individual particles in a Newtonian fluid. In
particular, the solution for the motion of a single ellipsoid of revolution in a steady
shear [49] in terms of a Fokker–Planck equation has been used to determine the gov-
erning equations for the slow flow of a dilute suspension of non-interacting particles.
In more concentrated systems, various approximations to the particle motions have
been used. Hinch and Leal [50] have named this approach, based upon a detailed
analysis of the microstructure, ‘structural’. Alternatively, ‘phenomenological’ con-
tinuum theories for anisotropic fluids have been postulated. These theories tend to
be quite general, being based upon a small number of assumptions about invariance.
Perhaps the most successful and well-known example is the Ericksen-Leslie (EL)
director theory for uniaxial nematic liquid crystals. Additionally, numerous models
have been developed and discussed in terms of symmetric second and higher order
tensorial measures of the alignment. Given these diverse methods of derivation and
apparently diverse domains of application, one may ask if, and how, such diverse
approaches may be interrelated. The answer and several examples (incl. concen-
trated suspensions of rod-like polymers, liquid crystals, ferrofluids) are given in this
section.

Chapter 8 is an attempt to review several strategies and open
questions concerning the thermodynamically admissible description of complex non-
equilibrium fluids on different levels (conc. length and time scales or structural de-
tails) of description. We will touch the theory of projection operators which act on the
space coordinates of atoms such that the resulting quantities serve as slow variables
needed to proceed with a separation of time scales in the corresponding Langevin
equations. Attempts being made to characterize the system with (a few) structural
quantities, known to be within reach of analytical theoretical descriptions and/or
accessible through experimentation will be reviewed. A similar formal structure,
namely a symplectic structure, for thermodynamics and classical mechanics was
noted early by Peterson [51] in his work about the analogy between thermodynamics
and mechanics. He notes that the equations of state, by which he means identical
relations among the thermodynamic variables characterizing a system, are actually
first-order partial differential equations for a function that defines the thermodynam-
ics of the system. Like the Hamilton–Jacobi equation, such equations can be solved
along trajectories given by Hamilton’s equations, the trajectories being quasi-static
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processes, obeying the given equation of state. This gave rise to the notion of ther-
modynamic functions as infinitesimal generators of quasi-static processes, with a
natural Poisson bracket formulation. In this case the formulation of thermodynamic
transformations is invariant under canonical coordinate transformations, just as with
classical mechanics. These illuminating ideas have been further developed [52, 53]
and generalized Poisson structures are now recognized in many branches of physics
(and mathematics). We are therefore also concerned with the formulation of so called
‘thermodynamically admissible’ simple models for complex fluids, where admissi-
bility is assumed whenever the complete set of state variables characterizing the sys-
tems possess the ‘General Equation for the Non-Equilibrium Reversible-Irreversible
Coupling’ (GENERIC) structure [38,54]. This structure (a special representation of a
less predictive ‘Dirac’ structure which also contains the Matrix model by Jongschaap
[55] as a special case, connections between thermodynamic formalism are revisited
in [56]) requires a Poisson bracket for the reversible part of the dynamics. Specifi-
cally, the time-structure invariance of the Poisson bracket as manifested through the
Jacobi identity has been used to derive constraint relationships on closure approxima-
tions [57]. Explicit coarsening procedures from connected or disconnected atomistic
chains (or FENE chains, Chap. 4) to primitive paths (Chap. 6, Fig. 1.2) are given in
Sects. 8.10.1–8.10.2.

Part II

Chapter 9. Monte Carlo methods use random numbers, or ‘random’ se-
quences, to sample from a known shape of a distribution, or to extract distributions
by other means. and, in the context of this monograph, to i) generate representative
equilibrated samples prior being subjected to external fields, or ii) evaluate high-
dimensional integrals. Recipes for both topics, and some more general methods, are
summarized in this chapter. Advanced Monte Carlo ‘moves’ for polymers, required
to optimize the speed of algorithms for a particular problem at hand, are outside the
scope of this brief introduction.

∆ µν,λγ
(2)

Chapter 10 summarizes definitions and properties of cartesian,
anisotropic, irreducible and isotropic tensors and related tensor operators. Tensors
rather than scalars allow to describe the anisotropic behavior of structural fluids sub-
jected to external fields. The formulas presented in this chapter help to evaluate ten-
sor operators (differentiation, integration) without performing a differentiation or an
integral, to rewrite arbitrary tensors of arbitrary rank made of unit vectors in terms
of the corresponding dyadics, and vice versa. This sets us in position to write down
(coupled) moment equations starting from a given differential equation for (orien-
tational) distribution functions, to derive approximate sets of coupled equations for
moments of the distribution functions.
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Chapter 11 introduces Fokker–Planck, Smoluchowski, and stochastic
differential equations, their interrelation and methods to solve them numerically. We
focus on the dynamics, in particular, the orientational dynamics of structured flu-
ids subjected to orienting fields. The dynamics and anisotropy is properly modeled
by using orientational distribution functions, their equation of change, and the corre-
sponding balance equations for moments (here, alignment tensors) of the distribution
function. We restrict ourself to discuss the case of one-particle (single-link) orienta-
tional distribution functions and explictely derive coupled set of moment equations
which cover all cases discussed in Part I.

Chapter 12 offers basic recipes and sample applications
which allow the reader to immediately start his/her own simulation project on top-
ics we dealt with in the foregoing chapters. The chapter provides simulation codes
and underlying equations. We concentrate on the necessary, and skip anything more
sophisticated. Codes have been used in classrooms, they are obviously open for mod-
ifications and extensions. Codes are short, run without changes, demonstrate the
main principle in a modular fashion, and are thus in particular open regarding ef-
ficiency issues and extensions. Algorithms are presented in the MatlabTMlanguage,
which is mostly directly portable to programming languages like fortran, c, or
MathematicaTM.





2

Dumbbell Model for Dilute and Semi-Dilute Solutions

Dumbbell models are very crude representations of polymer molecules. Too
crude to be of much interest to a polymer chemist, since it in no way accounts for
the details of the molecular architecture. It certainly does not have enough internal
degrees of freedom to describe the very rapid motions that contribute, for example,
to the complex viscosity at high frequencies. On the other hand, the elastic dumbbell
is orientable and stretchable, and these two properties are essential for the qualitative
description of steady-state rheological properties and those involving slow changes
with time. For dumbbell models one can go through the entire program of endeavor –
from molecular model to fluid dynamics – for illustrative purposes, in order to point
the way towards the task that has ultimately to be performed for more realistic mod-
els. According to [4], dumbbell models must, to some extend then, be regarded as
mechanical playthings, somewhat disconnected from the real world of polymers.
When used intelligently, however, they can be useful pedagocically and very helpful
in developing a qualitative understading of rheological phenomens.

Before we turn to FENE chain models with increasing complexity and predicitve
power for entangled polymeric systems, we should summarize some of the efforts
undertaken to analyze various approximations to the original FENE dumbbell model
for infinitely dilute solutions. This model can be rigorously solved by brownian dy-
namics (BD) and had been used in the pioneering micro-macro simulations [58].

A FENE dumbbell consists of two beads (mass points) connected with a non-
linear spring. Its internal configuration is described by a connector vector QQQ. The
FENE spring force law is given by [4, 59, 60]

FFFFENE = − HQQQ

1−Q2/Q2
0

, (2.1)

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 13–23 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 2.1. For the freely-jointed chain, the force-extension (FFF–QQQ) relationship is an inverse
Langevin function (Langevin function L(F) = coth(F)− 1/F), which is obvious due to its
immediate analogy with the case of magnetic moment (dimensionless ‘extension’ RRR = 〈uuu〉)
subjected to an external magnetic field (dimensionless ‘force’ FFF = hhh), which is worked out in
Sect. 7.5. There, in equilibrium, one has for the ‘extension’ QQQ ∝ 〈uuu〉eq = L(h)hhh/h, i.e., for the

scalar Q(F) = L(F), therefore F(Q) ∝ L−1(Q). For the FENE and Hookean forces, we have
QFENE(F) = Q0(

√
4F2 +(HQ0)2 −HQ0)/(2F) and QHook(F) = F/H, respectively. Since

limF→∞ Q(F) = 1, QFENE(F) = Q0, and for small F , Q(F) = F/3 and QFENE = QHook =
F/H, in the graph we plot Q(F) for all three cases with Q0 = 1,H = 3, and switch the F and
Q axis for the presentation, just to avoid computing the inverse Langevin

with H and Q0 denoting the (harmonic) spring coefficient and the upper limit for
the dumbbell extension. The singularity of the force at Q2 = Q2

0 is the mathemat-
ical implementation of the dumbbell’s finite extensibility, and aims to approximate
the inverse Langevin function, as further explained and demonstrated in Fig. 2.1.
The FENE spring is a valid approximation to a chain of freely rotating elements
(the Kramers chain) as long as the number of elements is large, and it gives a rea-
sonable approximation for the entropy of chains of finite length. An inifintely dilute
FENE polymer solution is modeled by a suspension of FENE dumbbells in a contin-
uous, Newtonian solvent, where the dumbbell beads are centers of a hydrodynamic
drag force, exerted by the surrounding solvent. Assuming Stokes law the drag force is
considered being proportional to the relative velocity between solvent and bead, with
a constant ζ , the friction coefficient. Point of departure for the statistical analysis is
the diffusion equation for the configurational distribution function ψ(QQQ, t)

∂ψ
∂ t

=
2kBT

ζ
∆ψ +

2
ζ

∇∇∇ · {FFFψ}−∇∇∇ · {(κκκ ·QQQ)ψ} . (2.2)
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Here, T is the absolute temperature, kB denotes Boltzmann’s constant, and FFF =
FFFFENE denotes the determinstic force. The Laplacian and nabla operators refer to
derivatives in configuration space. Time dependent expectation values with respect to
ψ will subsequently be denoted by angular brackets 〈. . .〉, and the FENE parameter
b ≡ HQ2

0/kBT , the relaxation time τ ≡ ζ/4H and a dimensionless shear parameter
Γ ≡ τγ will be often used. We will be (throughout this monograph) concerned with
homogeneous flow whose transposed velocity gradient is denoted as κκκ ≡ (∇∇∇vvv)†, i.e.,
vvv = κκκ · rrr. This enables us to carry out the calculations in the frame of a special co-
ordinate system, the one fixed by the center of mass of the dumbbell, the directions
of the axes are specified by the flow geometry. Notice, that (2.2) can be solved ana-
lytically only for potential flows [4]. A more detailed motivation for (2.2) is given in
Chap. 12 of this monograph.

The FENE dumbbell model has been originally used to describe non-newtonian
rheological effects in monodisperse and idealized infinitely dilute polymer solutions
with [61–63] or without hydrodynamic interaction [59,60], and to interpret scattering
patterns [63–65]. Analytic theories – except those we are going to illustrate in more
detail in the next section – have been restricted to infinitely dilute solutions based on
a one-particle-description, in which interactions with surrounding molecules have
not been considered. The FENE dumbbell with the pre-averaging Peterlin approxi-
mation (FENE-P) has been used extensively to describe the rheological behavior of
dilute [4] polymer solutions. The model is, however, severely limited, since it can-
not describe the broad distribution of relaxation times that real polymer molecules
possess. Detailed comparisons of various FENE dumbbell models for dilute solu-
tions conc. its rheological behavior in shear, elongational [66, 67] and also turbulent
flows [68] are available. It was shown that while in the linear viscoelastic limit and
in elongational flow the behaviour is close, in shear and turbulent flows serious devi-
ations appear. Fairly understood (in terms of a FENE-P model, cf. [67]) is the effect
of drag reduction upon adding small amounts of polymers to highly viscous liquid,
which are transported through (long) pipelines.

The FENE-P chain, which is conceptually located between FENE-dumbbell
models and full FENE chain models, however, has not been as widely used because
of the large number of coupled equations that must be solved simultaneously in or-
der to calculate the stress tensor. In [69] the FENE-PM chain, as a ‘good’ and effi-
cient approximation to the FENE-P chain had been introduced. The reduced number
of equations greatly expedites calculations for longer chains. It had been demon-
strated [70, 71] by means of standard and stochastic numerical techniques that the
pre-averaging Peterlin approximation used to derive the FENE-P macroscopic con-
stitutive equation has also a significant impact on the statistical and rheological prop-
erties of the full FENE chain model.

2.1 FENE-PMF Dumbbell in Finitely Diluted Solution

Results of light scattering experiments on dilute polymer solutions in various con-
centrations below the (equilibrium) overlap concentration have revealed a strong
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concentration dependence of the polymer conformation in shear flow [72]. In order
to present yet another candidate for describing the observed phenomena in an ap-
proximate fashion, for illustrative purposes, in order to introduce the Peterlin ap-
proximation and basis tensors for later use, and before turning to the recommended
full FENE models in the next sections, let us treat the FENE dumbbell model sup-
plemented by a mean field term which describes the concentration dependence in the
frame of a one-particle description. The basic idea [44] is to consider interactions be-
tween different molecules in an averaged approximation. The notation ‘FENE-PMF’
follows the recommendations on Page 203.

2.2 Introducing a Mean Field Potential

The mean field term models the effect of concentration induced anisotropy caused by
inter- as well as intramolecular interactions in the polymer solution. An expression
for the mean field potential can be adapted from theories for concentrated solutions
of rodlike polymers [73] and liquid crystals [74, 75] or obtained by carrying out a fi-
nite multipole expansion of the intermolecular pair potentials, in which the unknown
multipole moments are taken to be phenomenological coefficients [76]. The series
has to be written down to an order, which, after averaging with the configuration dis-
tribution function, leads to a non-constant and anisotropic expression involving the
tensor of gyration, i.e. up to the quadrupole-quadrupole-interaction. The correspond-
ing mean field force reads

FFFMF =
kBT

Q2
0

f
( c

c∗

) 〈
QQQ[2]

〉∗ ·QQQ . (2.3)

The symbol QQQ[2] = QQQQQQ denotes the irreducible (symmetric traceless) part of the
dyadics, QQQ[2] = QQQ(2) − 111/3, and QQQ(2) ≡ QQQQQQ. This notation, using square and round
brackets, cf. Page 199, will be used throughout this monograph. In (2.3), c is the con-
centration (mass density) of the polymers in solution, c∗ is a reference concentration.
The scalar function f represents a phenomenological coefficient. If it is assumed to
be zero for infinitely dilute solutions data of [72] suggest f = (c/c∗)1/3 with a char-
acteristic concentration c∗. This means f is proportional to the reciprocal average
distance between the molecules. The ansatz differs from the ones used in [73–75] in
the respect that a connector vector QQQ with variable length enters the expression for
the potential instead of a unit vector specifying the direction of a rod.

2.3 Relaxation Equation for the Tensor of Gyration

By multiplying (2.2) for homogeneous flows with QQQ(2) and subsequent integration

by parts, with FFF = FFFFENE +FFFMF, we obtain
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d
dt

〈
QQQ(2)

〉
=

4kBT
ζ

111+
4
ζ
{〈

FFFFENEQQQ
〉
+
〈
FFFMFQQQ

〉}

+κκκ ·
〈
QQQ(2)

〉
+
〈
QQQ(2)

〉
·κκκ†. (2.4)

The second moment will be expressed in a dimensionless form

ggg ≡
〈
QQQ(2)

〉∗ ≡
〈
QQQ(2)

〉

Q2
0

. (2.5)

For a stationary shear flow (plane Couette geometry) with shear rate γ̇ the second-
rank gradient tensor κκκ is given by κµν = γ̇ δµ1δ2ν if we denote with eee(1) the flow
direction, eee(2) the gradient direction, and eee(3) = eee(1) × eee(2) the vorticity direction.
For this geometry the orientation angle χ and the mean square dumbbell elongation〈
Q2

〉
are related to the tensor ggg by [77] tan2χ = (2g12)/(g11−g22), and

〈
Q2

〉
/Q2

0 =
gλλ = Trggg, while the tensor of gyration 1

4

〈
QQQ(2)

〉
equals 1 1

4 Q2
0 ggg. In dilute solutions

the tensor of gyration is assumed to be isotropic under equilibrium conditions. By
construction the mean field potential vanishes under equilibrium conditions, since it
is linear in the irreducible part of the gyration tensor.

Next, we wish to obtain a closed approximate set of equations for a stationary
solution of the relaxation equation (2.4). Inserting (2.1) and (2.3) and the explicit
expression for κκκ into (2.4) yields

1
b

δµν =
〈

Qµ Qν

Q2
0 −Q2

〉
− 1

b
f (

c
c∗

)
〈

Qµ Qλ

〉∗
〈Qλ Qν〉∗

−Γ
{

δµ1 〈Q2Qν〉∗ +δν1
〈
Q2Qµ

〉∗}
. (2.6)

We choose a standard decoupling approximation, referred to as Peterlin approxima-
tion [4, 78, 79], modified such that it is exact in equilibrium. Thus, a term equal to
zero is added and subsequently approximated by carrying out the involved averaging
under equilibrium conditions. This can be done, because the equilibrium distribution
function ψeq for the given problem is known [4,59]. Coupled moment equations may
be alternatively derived by making use of a Taylor series expansion for the expecta-
tion value associated with the FENE force term, cf. [4, 60, 80, 81]. One obtains

〈
Qµ Qν

Q2
0 −Q2

〉
≈

〈
Qµ Qν

〉∗

1−〈Q2〉∗ −
{〈

Qµ Qν
〉∗

eq

1−〈Q2〉∗eq
−
〈

Qµ Qν

Q2
0 −Q2

〉

eq

}

=

〈
Qµ Qν

〉∗

1−〈Q2〉∗ −
{

1
b+2

− 1
b

}
δµν . (2.7)

Use had been made of the isotropic moments (after Taylor expansion) which become
∀n

〈
Q2n

〉∗
eq ≈ ∏n

k=1(2k + 1)/(b + 2k + 3). Insertion of the (2.7) into (2.6) yields the
desired closed set of nonlinear equations

1 Definition gyration tensor for multibead chains: RRRg ≡ (1/N)∑N
i=1 rrrirrri where rrri is the bead

position vector with respect to the center of mass of the chain. Radius of gyration Rg ≡
TrRRRg.
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ggg
1−Trggg

− 1
b

f
( n

n∗

)
ggg ·ggg− τ(κκκ ·ggg+ggg ·κκκ†) =

111
b+2

. (2.8)

Explicit equations for the components gµν can be derived most conveniently in a
symmetry-adapted form.

2.4 Symmetry Adapted Basis

The symmetric second-rank tensor of gyration has six independent components. In
the plane Couette geometry two more components vanish for symmetry reasons,
because invariance under the transformation eee(3) →−eee(3) is required. An exception
will be discussed in Sect. 7.6. The corresponding four independent components of
the second moment are g11, g12, g22, and g33. We transform (2.8) to a version which
separates the irreducible and trace-dependent parts of the tensor of gyration, since
these are especially emphasized in the terms associated with the FENE and mean
field forces. The irreducible part of the tensor is decomposed with respect to a set
of pseudospherical cartesian basis tensors. This will result in a simple expression for
the orientation angle and in a more tractable expansion for small shear parameters.
The resulting equations are easily decoupled in this case. A set of orthonormal basis
tensors TTT (k) with k = 0,1,2,Tr is chosen according to [82, 83] whose elements are
given by

TTT (0) = (3/2)1/2 eee(3)eee(3) , TTT (1) = 2−1/2(eee(1)eee(1) − eee(2)eee(2)) ,

TTT (2) = 21/2 eee(1)eee(2) , TTT (tr) = 3−1/2(eee(1)eee(1) + eee(2)eee(2) + eee(3)eee(3)) (2.9)

with the orthonormality relation

∀k,lT
(k)
µν T (l)

µν = δkl . (2.10)

Note, that TTT (0), TTT (1), and TTT (2) are symmetric traceless, while TTT (tr) is associated with
the trace of a tensor. Two more ‘symmetry braking’ basis tensors

TTT (3) = 21/2 eee(1)eee(3) , TTT (4) = 21/2 eee(2)eee(3) (2.11)

will be used in connection with ‘rheochaotic states’ in Sect. 7.6. The tensor gµν can
be decomposed according to

gµν = ∑
k

gkT (k)
µν , gk = T (k)

µν gµν . (2.12)

The orientation angle χ and the (mean square) dumbbell elongation
〈
Q2

〉∗
now take

the form tan2χ = g2/g1,
〈
Q2

〉∗ =
√

3gTr. Using the decomposition and the ortho-
normality relation a set of coupled non-linear equations for the pseudospherical and
trace-dependent components of ggg is derived from (2.8):
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g(0) = −Γ
√

3
3

g2 − J{(g2
1 +g2

2 −g2
0)+

√
2g0gTr} ,

g(1) = Γ g2 − J(2g1g0 −
√

2g1gTr) ,

g(2) = Γ

(
gTr

√
6

3
+

g0
√

3
3

+g1

)

− J(2g2g0 −
√

2g2gTr) ,

g(Tr) = Γ
√

6
3

g2 + J(g2
0 +g2

1 +g2
2)+

√
3

b+2
, (2.13)

with the abbreviations

g(i) ≡ gi

1−
√

3gTr
, J ≡ b−1 f (c/c∗)/

√
6 (2.14)

Note that (2.7, 2.8, 2.13) correct some misprints in [80]. We cannot give an analytical
solution of the system without carrying out further approximations, which would
result in a significant change of the model. For small dimensionless shear rates Γ ,
however, exact aanalytical expressions for the orientation angle and the dumbbell
elongation are tan2χ = (1−φ)/(b̃Γ ) and

〈
Q2〉∗ =

3
b+5

{
1+

2
3

(
1− (1− 1√

2
)φ
)

(1−φ)−2 b̃3 Γ 2
}

(2.15)

with φ = φ(c)≡ f (c/c∗)(b+2)/(b(b+5)2) and b̃ ≡ (b+2)/(b+5). These expres-
sions show that for a given shear rate the orientation angle decreases and the radius
of gyration increases with rising (still small) concentration. Of course, they reduce to
the ones known for FENE dumbbels at zero concentration (c = φ = 0). For Hookean
dumbbell the relations for χ and

〈
Q2

〉∗
are obtained for b → ∞, b̃ = 1.

For larger shear rates the system of coupled non-linear equations (2.13) has to be
solved numerically. Solutions are restricted to a limited range of f (or φ ). To illustrate
the influence of the mean field term, results are presented for a fixed value of b = 1
for the FENE parameter (the significance of b in the original theory has been well
analyzed in [59,60]). For comparison, we will show plots for the dumbbell elongation
and the orientation angle for various b and different concentration parameters.

In Fig. 2.2 the radius of gyration in units of the equilibrium radius is given for
different concentrations vs dimensionless shear rate Γ . For given rate, the radius
of gyration increases with rising concentration. The relative increase is larger for
smaller shear rates, because with rising shear, the deformation is limited by Q0.
Figure 2.3 shows the related plot for the orientation angle. For all concentrations
the curve differs from the simple law tan2χ ∝ γ̇−1 ∝ Γ −1, which results from linear
theories or from perturbation results of low order. A dashed curve referring to the
simple law is given for comparison.

The quantity g ≡
√

g2
1 +g2

2 shown in Fig. 2.4 is a measure for the degree of
alignment into the shear plane. As expected, we find an increasing anisotropy with
rising concentration. The influence of the FENE parameter b is presented in Figs. 2.5,
2.6. The shear rate is given in units of a characteristic time constant λ = τ b/3 for
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Fig. 2.2. Radius of gyration in units of its equilibrium value versus shear parameter Γ for
concentration parameters of f = 0,2,4, and 6, and a FENE parameter b = 1 [80]
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Fig. 2.3. Orientation angle versus shear parameter Γ , see Fig. 2.2 for the choice of parameters.
Dashed curve according to a linear bead spring theory resulting in tan2χ = Γ −1 [80]
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gyration versus shear parameter Γ [80]
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Fig. 2.5. FENE dumbbell elongation versus shear parameter λ γ̇ = bΓ γ̇/3 for various b and
different concentration parameters φ [80]
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Fig. 2.6. Orientation angle versus shear parameter λ γ̇ for various b and different concentration
parameters φ [80]

FENE dumbbells in this case to achieve comparability with results from the origi-
nal theory [59, 60]. The mean field influence is controlled by variation of φ which
characterizes the mean field magnitude independently of b in the case of small shear
rates. In the range of higher shear rates the dumbbell elongation falls with rising
concentration parameter (Fig. 2.5). Especially for higher b, the elongation is now
limited by the mean field, not by the finite extensibility.

2.5 Stress Tensor and Material Functions

The polymer contribution to the stress tensor τττ p for the FENE dumbbell takes the
form of an extended Kramers expression [4], cf. Sect. 8.7,

τττ p = n
〈
(FFFFENE +FFFMF)QQQ

〉
+nkBT 111 . (2.16)
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Fig. 2.7. Reduced viscosity versus shear parameter λ γ̇ for various b and different concentra-
tion parameters φ [80]

Using (2.4) and the definition of the convected time derivative δ/δ t(. . .) ≡
d/dt(. . .)−κκκ · (. . .)− (. . .) ·κκκ† leads to τττ p = (nζ/4)δ/δ t 〈QQQQQQ〉. This is similar to
a Giesekus expression [4] resulting from the original FENE dumbbell theory. The
shear flow material functions for the fluid in a plane Couette geometry [4] are there-
fore given as functions of the tensor of gyration. In particular, we have

ηp

ηp,0
= (b+5)g22 = (b+5)

(√
3

3
gTr −

√
6

6
g0 −

√
2

2
g1

)

(2.17)

for the reduced viscosity ηp ≡ τxyγ̇−1 and

Ψ1

Ψ1,0
= (b+5)

g12

Γ
= (b+5)

√
2g2

2Γ
(2.18)

for the reduced first viscometric function Ψ1 ≡ (τxx − τyy)γ̇−2. The 2nd viscometric
function Ψ2 ≡ (τyy−τzz)γ̇−2 is equal to zero in the present case. Figure 2.7 shows the
reduced viscosity versus shear parameter λ γ̇ for various b and two different concen-
tration parameters φ . There is a stronger shear thinning effect for φ 	= 0. These results
compare well with data from light scattering experiments [72,80,81] such that there
is no need to present detailed comparisons (which can be also found in [84, 85]).

With increasing concentration (close to and above the overlap concentration) cor-
relations between different molecules become stronger and the one-particle descrip-
tion has to be abandoned [86, 87]. Scattering experiments have been performed on
semi-dilute polymer solutions at rest and in laminar shear flow at different tempera-
tures by SANS [88] and by (small angle) light scattering (SALS) [89–91] as well as
by dynamic light scattering [92].
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2.6 Reduced Description of Kinetic Models

Numerical implementation of kinetic models in direct numerical flow calculations
is in general computationally expensive. This is especially true for chain models to
be discussed in later sections. However, kinetic models of polymer dynamics may
serve as a starting point for the derivation of constitutive equations. Derivations are
not straightforward but require approximations to the underlying kinetic model. The
need for so–called closure approximations occurs also in other branches of statis-
tical physics and several suggestions for such approximations have been proposed
in the literature (see e.g. [93] and references therein). The frameworks ‘reduced de-
scription’ and ‘invariant manifolds’ have been developed to efficiently obtain an
approximate solution for Fokker–Planck equations for FENE dumbbells and liquid
crystals [94] and of the types to be discussed later in this monograph. In [95] the au-
thors give a compact non-technical presentation of two basic principles for reducing
the description of nonequilibrium systems based on the quasiequilibrium approxima-
tion. These two principles are: Construction of invariant manifolds for the dissipative
microscopic dynamics, and coarse-graining for the entropy-conserving microscopic
dynamics. It had been demonstrated in general and illustrated how canonical distrib-
ution functions are obtained from the maximum entropy principle, how macroscopic
and constitutive equations are derived therefrom and how these constitutive equa-
tions can be implemented numerically [94, 96]. A measure for the accuracy of the
quasiequilibrium approximation had been proposed that can be evaluated while in-
tegrating the constitutive equations. Within the framework of reduced description,
equations of change for the ‘dual’ variables appearing in an ansatz for the distibu-
tion function play a major role. The method has been further applied to ferrofluids
in [97]. Constructive methods of invariant manifolds for kinetic problems are going
to be reviewed elsewhere [98]. A closely related approach using projectors will be
shortly discussed in Sect. 8.7.





3

Chain Model for Dilute Solutions

Various experimental observations reveal an important aspect of the behavior
of polymer solutions which is not captured by FENE dumbbell models. When the
experimental data for high molecular weight systems is plotted in terms of appropri-
ately normalized coordinates, the most noticeable feature is the exhibition of univer-
sal behavior. By this it is meant that curves for different values of a parameter, such
as the molecular weight, the temperature, or even for different types of monomers
can be superposed onto a single curve. For example, when the reduced intrinsic vis-
cosity is plotted as a function of the reduced shear rate, the curves for polystyrene
in different types of good solvents at various temperatures collapse onto a single
curve [4]. There is, however, an important point that must be noted. While poly-
mers dissolved in both theta solvents and good solvents show universal behavior, the
universal behavior is different in the two cases. An example of this is the observed
scaling behavior of various quantities with molecular weight. The scaling is universal
within the context of a particular type of solvent. The term universality class is used
to describe the set of systems that exhibit common universal behavior [99]. Thus
theta and good solvents belong to different universality classes.

3.1 Hydrodynamic Interaction

As pointed out in 1948 [100], the perturbation of the solvent flow field induced by
suspended spherical particles (‘beads’) leads to an additional interaction between
beads, the so called HI. Incorporation of this effect into the classical Rouse model
for dilute polymer solutions makes the resulting model equations – containing a HI
matrix – nonlinear. Predictions for some material properties were found to become
much more realistic when HI is accounted for [4, 13, 58, 64, 65, 101, 102]. In the
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usual discussion of HI, one linearizes the Navier-Stokes equation (NSE) and assumes
that the propagation of solvent flow perturbations is infinitely fast. If the beads are
point particles one obtains for the perturbation of the flow at position rrr: 
vvv(rrr) =
ΩΩΩ(rrr−rrr′) ·FFF(rrr′), where FFF(rrr′) is the force exerted by a bead at point rrr′ on the solvent,
and ΩΩΩ(rrr) is the Green’s function of the time-dependent linearized NSE, known as
Oseen-Burgers tensor (one has to require ΩΩΩ(000) = 000 in order to avoid hydrodynamic
self-interactions).

There appear to be two routes by which the universal predictions of models with
HI have been obtained so far, namely, by extrapolating finite chain length results to
the limit of infinite chain length where the model predictions become parameter free,
and by using renormalization group theory methods. In the former method, there are
two essential requirements. The first is that rheological data for finite chains must be
generated for large enough values of N so as to be able to extrapolate reliably, i.e.,
with small enough error, to the limit N → ∞. The second is that some knowledge
of the leading order corrections to the infinite chain length limit must be obtained
in order to carry out the extrapolation in an efficient manner. It is possible to obtain
universal ratios in the zero shear rate limit in all the cases [58].

The diffusion equation, sometimes referred to as Fokker–Planck equation, for
the configurational distribution function f (t,rrr1,rrr2, ..,rrrN) for a chain with N beads
reads [58, 103] subject to homogeneus flows (κκκ was defined in Chap. 2)

∂ f
∂ t

= −
N

∑
i=1

∂
∂ rrri

·
(

κκκ · rrri +
1
ζ ∑

j
HHHi j ·FFF j

)

f +
kBT

ζ ∑
i, j

∂
∂ rrri

·HHHi j ·
∂

∂ rrr j
f (3.1)

with the HI matrix HHHi j ≡ HHH(rrri j) = δi j111+ζ ΩΩΩ(rrri j). In the Itô approach, the stochas-
tic differential (Langevin) equations of motions for bead positions equivalent to the
Fokker–Planck equation (3.1) are

drrri =

(

κκκ · rrri +
1
ζ

N

∑
j

HHHi j ·FFF j

)

dt +

√
2kBT

ζ
dSSSi , (3.2)

where dSSSi ≡ ∑ j BBBi j · dWWW j(t); WWW denotes a Wiener process (Gaussian white noise
vector); BBB is related to the HI matrix through the fluctuation-dissipation theorem
HHHi j = ∑N

k BBBik · BBBT
jk and FFF j denotes the sum of (other than HI, i.e. spring) forces

on bead j. Equation (3.2) is the starting point for a NEBD computer simulation,
the only tool available for treating chains with HI rigorously. There are two possi-
bilities for restoring a positive-semidefinite diffusion term when the assumption of
point particles fails (one implicitly introduces a bead radius through Stokes monomer
ıFriction!coefficient!Stokes friction coefficient ζ ): one can prevent the beads from
overlapping, or one can modify the Oseen-Burgers HI tensor. In the following appli-
cation we will use ΩΩΩ according to the regularization proposed by Rotne, Prager and
Yamakawa [104]. The Langevin equation (3.2) can’t be solved in closed form. In
order to obtain a tractable form, in 1956 Zimm replaced the random variables ΩΩΩrrri j

by their equilibrium (isotropic) averages, i.e., HHHi j → Hi j111 with the N ×N matrix
Hi j = δi j +h∗(1−δi j)(2/|i− j|)1/2 and a HI parameter [105]
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h∗ ≡ ζ
6πηs

√
H

πkBT
, (3.3)

where H denotes the harmonic bead-spring coefficient. The parameter h∗ can be
expressed as h∗ = ab/(πkBT/H)1/2 which is roughly the bead radius ab over the
root-mean-square distance between two beads connected by a spring at equilibrium,
hence 0 < h∗ < 1/2. For analytical and experimental estimates of h∗ see [4,103,106].
For the Zimm model h∗ = 1/4 minimizes the effect of chain length and the very short
and long chain limits can be elaborated analytically.

3.2 Long Chain Limit, Cholesky Decomposition

For several reasons, the long chain limit is important. It is independent of the de-
tails of the mechanical model, and hence is a general consequence of the presence
of HI and equilibrium averaged HI for the Zimm model [58]. respectively. For long
chains it should be observed that h∗ occurs only in the combination ζ/h∗ in all mate-
rial properties. Therefore, the parameter h∗ has no observable effect on the material
properties of long chains. Power law dependences of various material properties on
molecular weight M ∝ N with universal exponents are expected (see Sect. 8.2.2.1
of [107]) and, from the prefactors, one can form universal ratios [58]. The universal
exponents and prefactors are ideally suited for a parameter-free test of the model
by means of experimental data for high molecular weight polymer solutions. We
obtained estimates by extrapolation from extensive and efficient simulation.

3.3 NEBD Simulation Details

A coarse-grained molecular model represents the polymer molecules: the FENE
bead-spring chain model, i.e., N identical beads joined by N − 1 (anharmonic)
springs. The solvent is modeled as an incompressible, isothermal Newtonian ho-
mogeneous fluid characterized by its viscosity ηs. The solution is considered to be
infinitely diluted, and the problem is limited to the behavior of one single molecule.
In combination with the variance reduction scheme, chain lengths comparable to real
conditions (e.g., N = 300, cf. Chap. 4) are now coming within reach of simulations.

The decomposition of the diffusion matrix HHH to obtain a representation for BBB
(e.g., Cholesky decomposition) for long chains is expensive and scales with N3. A
highly efficient method [108] is based on an approximation of the square root func-
tion in Chebyshev (tensor) polynomials TTT k of the first kind, following the notation
in [109],

BBB =
√

HHH ≈
L

∑
k=1

ckTTT k−1(HHH)− 111
2

c1 , (3.4)

where the recursive formula
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TTT k+1(HHH) = 2HHH ·TTT k(HHH)−TTT k−1(HHH) , (3.5)

together with TTT 0(HHH) = 111 and TTT 1(HHH) = HHH define these polynomials. For a fixed L,
(3.4) is a polynomial in HHH which approximates BBB in the interval [–1,1] (concern-
ing the eigenvalues of HHH), where all the zeros of TTT k are located. The sum can be
truncated in a very graceful way, one that does yield the ‘most accurate’ approx-
imation of degree L (in a sense which can be made precise). The convergence of
the Chebyshev polynomial approximation requires that the eigenvalues of the ma-
trix HHH are within the interval [–1,1]. Actually, this is not the case, and one intro-
duces shift coefficients, ha and hb in order to apply the recursion formula to the
‘shifted’ matrix HHH ′′′ ≡ haHHH + hb111 whose eigenvalues should be within the desired
range. This requirement is fulfilled for ha = 2/(ΛM −Λ0), 2hb = −ha(ΛM + Λ0),
where Λ0 and ΛM denote the minimum and maximum eigenvalues of the original
HI matrix HHH, respectively [102]. The coefficients of the series are readily obtained
by standard methods [109,110]: c j = L−1 ∑L

k=1 αL
k j (b+ +b− cos[π(k−1/2)/L])1/2,

with coefficients b+ ≡ (ha + hb)/2, b− ≡ (hb − ha)/2, and the abbreviation αL
k j ≡

2cos[π( j− 1)(k− 1/2)/L]. Instead of calculating the square root matrix first, thus
implying several time consuming matrix by matrix products for the evaluation of the
polynomials of the series, and afterwards its product with the random WWW vector, the
desired vector is obtained directly as a result of a series of different vectors VVV , recur-
sively calculated only through less expensive matrix (HHH) by vector (VVV ) products, i.e.,
one replaces dSSSi in (3.2) by

dSSSi ≡ BBBi j ·dWWW j

=

(
L

∑
k

ckTTT k−1(HHH ′)−111c̃1

)

·dWWW j(t)

=
L

∑
k

ck dVVV i
k−1 − c̃1dWWW j , (3.6)

with c̃1 = c1/2. The recursion formula for dVVV i
k ≡ TTT k(HHH ′) · dWWW i is immediately ob-

tained from (3.5). Its evaluation requires an effort ∝ N2 for every k = 1,2, ..,L. The
overall computational demand of the method we use scales with N2L ∝ N9/4 per time
step as shown in [102]. The eigenvalue range applied in the implementation of this
idea is specific for the problem under study. In general, one has to ensure that the
degree of violation of the fluctuation-dissipation theorem (with respect to an elegible
matrix norm) is small enough to obtain exact moments of the distribution function
with a desired accuracy, e.g., along the lines indicated in [111], in order to prevent
a direct calculation of eigenvalues. There is an increasing interest in using iterative
schemes to decompose the HI matrix, e.g., [65, 108, 111–122].

In addition to this decomposition method a variance reduction simulation tech-
nique has been implemented in [102] to reduce the statistical error bars (see also [58],
p. 177). For this purpose two simulations are run in parallel, one at equilibrium, and
another undergoing steady shear flow but using the same sequence of random num-
bers. After a certain time interval the desired magnitudes are sampled, and the chain
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simulated under steady shear flow is (periodically) reset to the state of the chain in
equilibrium. Simulations for this model have been further performed, e.g., for the
case of step shear deformation in [123]. The Cholesky decomposition has been re-
cently applied within an accelerated Stokesian dynamics algorithm for brownian sus-
pensions [124] and for simulations of supercooled DNA [125]. For a sample brown-
ian dynamics code, as well as an algorithm for the Chebyshev decomposition see
Chap. 12.

Table 3.1. Analytical, experimental and numerical results for the zero shear rate limit. E.g.,
Fixman estimated URD = 1.42 [126] but couldn’t estimate UηR due to the slow convergence
of rheological properties η (and also Ψ1,2). The asterisk marks results obtained taking into
account excluded volume. The estimates of de la Torre et al. and Bernal et al. [115, 127, 128]
were obtained by extrapolation from their results for h∗ = 1/4 [102]

URD UηR UΨη UΨΨ Uηλ UΨS

Theory
Rouse [58] ∝ N−1/2 ∝ N+1/2 0.8 0 1.645 ∝ N
Zimm [58] 1.47934 1.66425 0.413865 0 2.39 20.1128
Consist. averag. [103] 1.66425 0.413865 0.010628
Gaussian approx. [129] – 1.213(3) 0.560(3) –0.0226(5) 1.835(1) 14.46(1)
Twofold normal Zimm [129] – 1.210(2) 0.5615(3) –0.0232(1) 1.835(1) 14.42(1)
Renormalization [106] – 1.377(1) 0.6096(1) –0.0130(1) – 20.29(1)
Oono∗ [130] 1.56(1) – – – – –
Öttinger∗ [131] – – 0.6288(1) – – 10.46(1)

Experiment
Schmidt [132, 133] 1.27(6) – – – – –
Miyaki [134] – 1.49(6) – – – –
Bossart [63] – – 0.64(9) – – –
Bossart∗ [63] – – 0.535(40) – – –

Simulation
Fixman [126] (NEBD) 1.42(8) – – – – –
de la Torre [127] (NEBD) 1.28(11) 1.47(15) – – 2.0 –
Rubio [135] (MC) – >1.36(5) – – – –
Garcia Bernal∗ [128] (NEBD) 1.48(15) 1.11(10) – – –
Aust∗ (NEMD) [45] 1.41(6) – – – – –
Kröger (NEBD) [102] 1.33(4) 1.55(6) 0.45(7) 0.05(4) – 19(2)

3.4 Universal Ratios

The most interesting theoretical predictions for experimentally accessible quantities
are those which are independent of any physical parameters. In the limit of in-
finitely long chains the Zimm model predicts a diffusion coefficient limN→∞ Dh =
ch∗kBT/(ζ

√
N), radius of gyration limN→∞ Rg = (NkBT/2H)1/2, and spectrum of
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relaxation times
lim

N→∞
λ Zimm

j = c j(N/ j)2/3ζ/(4h∗Hπ2) (3.7)

with c1 = 1.22 and c j = 2π j/(2π j−1) for j > 1 [136].
Having established these relationships for the Zimm model one can construct

and define a number of universal ratios for experimentally accessible quantities. The
universal quantity

URD ≡ Rg

Rh
≡ 6πηsDhRg

kBT
, (3.8)

is the ratio between radius of gyration and hydrodynamic radius, the latter quantity
can be actually measured experimentally in a dynamic experiment, e.g., by observing
the relaxation time of the dynamic scattering function S(q, t) for small momentum
transfers qRg � 1. The universal ratio

UηR ≡ lim
c→0

ηp

cηs(4πR3
g/3)

Zimm→ 9
2

Uηλ Dhλ Zimm
1

URDR2
g

(3.9)

is a measure for the specific polymer contribution ηp to the reduced shear viscosity,

UΨη ≡ lim
c→0

ckBTΨ1

η2
p

, (3.10)

gives the ratio between first viscometric function and squared polymer contribution
to the shear viscosity,

UΨΨ ≡ Ψ2

Ψ1
, (3.11)

is the ratio between the second and first viscometric function,

Uηλ ≡ lim
c→0

ηp

ckBT λ1

Zimm=
λη

λ1
=

π5/2

4[Γ (3/4)]2c1
, (3.12)

reflects the proportionality between ηp and the longest relaxation time, and

UΨS ≡
kBTΨ1

cη2
s R6

g
= UΨηU2

ηR(4π/3)2 , (3.13)

(also introduced in [58]) is just a combination of two of the above universal ratios.
Results for the Zimm model are also given in the above defiining equations. From
these ratios one can, for example, eliminate the unspecified proportionality coeffi-
cients in the ‘blob’ theory of polymer statistics [137, 138].

Universal ratios are collected in Table 3.3. It contains results for diverse the-
oretical approaches such as obtained by the Zimm model, the Gaussian approxi-
mation, a consistent averaging procedure, and renormalization group calculations,
together with experimental and numerical findings. The estimates for the exact long-
chain limit are extrapolated from NEBD data, where the polymer contribution to
the stress tensor and radius of gyration needed to analyze universal ratios are calcu-
lated directly from bead trajectories. In particular, the monomer diffusion coefficient
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Fig. 3.1. The ratio URD between gyration and hydrodynamic radii vs the inverse square root of
chain length for different values of the HI interaction parameter h∗. As a reference, results for
the Zimm model are also shown (small dots). By extrapolation to N → ∞ the universal ratio is
obtained (see Table 3.3). Apparently, URD depends linearly on 1/
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N [102]
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Fig. 3.2. The ratio UΨη , cf. Fig. 3.1 [102]

D and radius of gyration Rg are sampled from bead trajectories {rrri(t)} according
to D = limt→∞(∑N

i=1[rrri(t)− rrri(0)]2)/(6Nt) and R2
g = ∑i[rrri − rrrc]2/N, respectively,

where rrrc denotes the center of mass of the molecule. The simulation reveals that the
power law regime for monomer diffusion D will be obtained earlier than the one for
the more ‘global’ Rg. By analogy to classical results for the diffusion of a sphere em-
bedded in a Newtonian liquid the hydrodynamic radius (of the corresponding sphere)
is defined by Rh = kBT/(6πηsD). An independent discussion about relaxation times
for this system, needed to determine Uηλ can be found in [127]. As for the Zimm
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model, simulation results reveal that the radius of gyration converges more fast to its
long chain limit than the hydrodynamic radius. In [103] the leading corrections to the
limit of infinitely long chains have been estimated in the framework of a generalized
Zimm model for dilute polymer solutions. They are of the following form:

Ui(h∗,N) = Ũi +
ci√
N

(
1
h∗i

− 1
h∗

)
, (3.14)

for i ∈ {RD,ηR,etc.}. A careful analysis of the simulation data (last row of Ta-
ble 3.3) yields the following results for the coefficients defined through (3.14):

ŨRD = 1.33±0.05, cRD = −0.49, h∗RD = 0.267 ,

ŨηR = 1.55±0.04, cηR = 1.9, h∗ηR = 0.250 ,

ŨΨη = 0.29±0.1, cΨη = −0.20, h∗Ψη = 0.261 ,

ŨΨΨ = 0.05±0.1, cΨΨ = 0.05, h∗ΨΨ = 0.247 . (3.15)

As expected from [103] the values h∗i for which the leading order corrections are
absent do not coincide for the various functions Ui. Since the functions (3.14) for
a given i and different HI parameters appear as a set of converging straight lines in
the representations of raw data in Figs. 3.1, 3.2 it is obvious, that the data for URD is
represented better by the expression (3.14) than the data for the remaining universal
ratios.
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Chain Model for Concentrated Solutions and Melts

A dense collection of repulsive FENE chains serves as a suitable microscopic
model for both entangled and unentangled polymer melts. We will consider once
more linear and monodisperse chains although FENE models are immediately ap-
plicable to polydisperse polymers with aribtrary architectures. Besides its success
for the study of polymer melts at equilibrium [13,139–141], the nonlinear viscoelas-
tic and structural properties of FENE chain models such as viscosities and scattering
patterns are in accordance with experimental results for shear- and elongational flows
[17, 18, 142–146]. Due to the computational demands caused by the strong increase
of relaxation time with molecular weight (M) only recently it has been observed,
that the basic model also exhibits the experimentally observed rheological crossover,
certainly related to the ability of polymers to form knots (topological constraints)
between macromolecules which is further discussed in [5, 147–154]. The crossover
manifests itself in a change of power law for the zero shear viscosity at a certain M.

For FENE melts, FENE forces of the type (2.1) act between all adjacent beads
(next neighbors) within chains, and the repulsive part of the radially symmetric
Lennard–Jones (LJ) potential (often called WCA potential, introduced by Weeks,
Chandler and Anderson [155]) is added between ALL pairs of beads – within cutoff
distance – in order to model excluded volume,

FFFWCA(rrr) = ε FFFWCA∗(rrr/σ)

FFFWCA∗(rrr) = −4∇rrr

(
1

r12 −
1
r6 +

1
4

)
= −24

(
r6 −2

r12

)
rrr
r2 , r ≤ 21/6 , (4.1)

and FFFWCA∗(r ≥ 21/6) = 0. where r denotes the distance between two interacting
beads. The Lennard–Jones and WCA potentials can be read off from (4.1). Here
and in the following all dimensionless quantities which are reduced to the usual

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 33–48 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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Lennard–Jones units of [156–158] are denoted by an asterisk only if otherwise ambi-
guities could arise. We refer to [159] for the discussion of an alternative short range
repulsive potential.1

4.1 NEMD Simulation Method

The total radially symmetric force FFF between pairs of beads for the FENE multichain
system is FFF = FFFWCA +FFFFENE and FFF = FFFWCA for adjacent and non-adjacent beads,
respectively. As in [17, 139, 140] for melts the FENE spring coefficients H = 30
and Q0 = 1.5 (at temperature T = 1, Lennard–Jones units) chosen strong enough to
make bond crossings energetically infeasible and small enough to choose a reason-
able integration time step during the NEMD simulation, which integrates Newton’s
equation of motion for this system via a velocity Verlet algorithm (conc. the applica-
tion reviewed in this section). The simulated systems presented in the next section
consist of 3× 105 beads arranged in chains with N = 4− 400 beads each. A sta-
tionary, planar Couette flow in x-direction (gradient in y-direction) with shear rate γ̇
will be imposed [17]. Neighbor lists, Lees-Edwards boundary conditions [156], and
layered link cells [161] are used to optimize the computer routines, In contrast to the
standard procedure for equilibrium simulations we update the list of pair dependen-
cies on an upper limit for the increase of the relative separation of these pairs, not on
the absolute motion of individual particles. Temperature is kept constant by rescaling
the magnitude of the peculiar particle velocities which corresponds to the Gaussian
constraint of constant kinetic energy [158] for small integration time steps. Alter-
native constraint mechanisms (configurational, Nose-Hoover thermostats, SLLOD,
etc.) have been extensively discussed elsewhere, and are still under discussion. Since
simulation runs are CPU time consuming it should be mentioned that the genera-
tion of well quasiequilibrated dense samples for simulations is of particluar rele-
vance. Several codes have been developed which attempt to reach pre-equilibration
(at given density) using Monte Carlo, tree-based, fuzzy logic, neural network strate-
gies, to mention a few. The NEMD simulation method is – in principle – independent
of the choice for a particular FENE model. For a sample code see Chap.12, where
also temperature control, integration scheme etc. will be introduced. Generating a
pre-equilibrated initial configuration is a difficult task for dense polymeric systems.
Efficient sample generators are available in the literature, e.g., [32], where chains
are ‘blown’ up dynamically, or one can try to statically ‘walk ‘ into a local poten-
tial energy minimum using the method of conjugated gradients, for which codes are
available, e.g., in [109].

1 Short range repulsive (SR) potential [159,160]: USR∗ ≡ (9−8r)3, r < rcsh = 9/8 (reduced
LJ units). The parameters are chosen such that at r = 1, the values of the potential functions
SR and (4.1) and of their first derivatives are equal. Short range attractive (SA) potential:
USA∗

= (512/27)(1− r)(3−2r)3, r < 3/2.
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4.2 Stress Tensor

The stress tensor σσσ (equals the negative friction pressure tensor), a sum of kinetic
and potential parts, is calculated from its tensorial virial expression

σσσ = − 1
V

〈
Nb

∑
i=1

ccc(i)ccc(i) +
1
2

Nb

∑
i=1

Nb

∑
j=1

rrr(i j) FFF(rrr(i j))

〉

, (4.2)

where V is the volume of the simulation cell, Nb is the total number of beads, rrr(i) and
ccc(i) are the spatial coordinate and the peculiar velocity of bead i within a polymer
chain, respectively, rrr(i j) ≡ rrr(i) − rrr( j), and FFF is the pair force. The stress tensor is
accessible as time average from the calculated bead trajectories. For dense fluids,
the main contribution to the rheological properties stems from the potential part of
the stress tensor, except for the case of highly aligned samples. Material function
such as viscosities and shear moduli are defined in terms of the stress tensor and flow
parameters [4]. The official nomenclature is periodically published by the Journal of
Rheology.

4.3 Lennard–Jones (LJ) Units

For any measurable quantity A with dimension [A],

[A] = kgα mβ sγ (4.3)

one has
A = Adimless ×Aref , (4.4)

with
Aref = mα+γ/2rβ+γ

0 ε−γ/2 , (4.5)

where σ ,ε provide the length and energy scales via the Lennard–Jones potential and
the monomeric mass m via Newton’s equations of motion. Specifically, the reference
quantities for density, temperature, time and viscosity are nref = σ−3, Tref = ε/kB,
tref = σ

√
mε , ηref = σ−2√mε . We therefore have to deal exclusively with ε = σ = 1

in (4.1). See Sect. 4.9 for a comment on how to intepret dimensionless simulation
numbers.

4.4 Flow Curve and Dynamical Crossover for Polymer Melts

For the FENE chain melt, rheological properties were extracted for various shear
rates over eight decades from γ̇ =10−8 to γ̇ =1 for N =4−400 [142, 162]. For the
short chains (N <20) a weak shear dilatancy is detected. With increasing shear rate
the trace of the pressure tensor decreases due to the intramolecular bond stretching.
The non-newtonian viscosity η ≡σxy/γ̇ is shown for different chain lengths and rates
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Fig. 4.1. Non-Newtonian shear viscosity η of the FENE model vs shear rate γ̇ (LJ units)
for different chain lengths N. Inset: Zero rate shear viscosity η0 vs chain length. Adapted
from [162]

in Fig. 4.1. The FENE chain melt is shear thinning, and approaches a power law curve
η ∝ γ̇−α independent of M with the exponent α =0.5±0.2. From the non-newtonian
viscosity η in Fig. 4.1 the zero rate viscosity η0 [4] can be estimated. This quantity
clearly exhibits a crossover from a Rouse-type regime η0 ∝ N1 to η0 ∝ Nν≥3 (inset
of Fig. 4.1) It is well represented by the expression η0 = 0.7N(1 + Zν−1) with a
number of ‘rheologically relevant’ entanglements per chain Z ≡ N/Nc and exponent
ν = 3.3± 0.2. The zero rate first viscometric function Ψ1 ∝ (σyy −σxx)/γ̇2 [4] is
found to exhibit a crossover at the same critical chain length.

Elliptical contours in the structure factor of single chains and their rotation
against flow gradient direction have been analyzed and plotted against wave number
in order to visualize the (different) degree of orientation on different length scales
inside a polymer during shear flow, see also Fig. 4.2 for a schematic drawing.

4.5 Characteristic Lengths and Times

For the characteristic relaxation times τN defined from the onset of shear thinning
at shear rate γ̇ = γ̇N ≡ 1/τN we obtain from the NEMD simulations: τN ∝ N≈2 for
short chains, in accordance with the Rouse model predictions. Based on careful mea-
surements of monomer diffusion coefficients and further properties for the FENE
chain melt obtained from MD simulations [139, 140] with up to N = 400 beads
per chain a ‘dynamical’ crossover has been observed. A characteristic length was
found which marks the crossover between ‘Rouse’ to ‘reptation’ diffusion regimes,
for which the diffusion coefficients ideally scale as D ∝ 1/N and D ∝ 1/N2, respec-
tively. The plateau modulus G0

N , from which the entanglement Me can be rigorously
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Fig. 4.2. Differences between local and global order of polymeric FENE chains under shear
flow conditions are revealed via the NEMD structure factor of single chains. (Top left) Struc-
ture factor extracted by NEMD, projected to shear plane. (Top right) Contour fit allows to
extract the half axes (half wave numbers) of ellipses and the rotation angle β . (Bottom) Rota-
tion angle vs wave number. Experimental results by [163] serve as a reference

deduced [164] has been reported for the FENE chain melt in [147] for chains up
to N = 104 from the shear stress plateau during relaxation after step strain. The re-
ported value for Ne is about a factor 2.3 larger than the one reported for the dynamical
crossover in [139], and thus rather close to the critical weight Nc = 100±10 obtained
via NEMD in [162].

The commonly experimentally accessible quantities characterizing a polymer
melt at certain temperature are its monomer density ρ , average M, monomer mass
m, squared end-to-end distance per monomer b2 ≡

〈
R2/N

〉
, the critical and entan-

glement weights, Mc = mNc and Me = mNe, respectively, and the Kuhn length bK .
These quantities are related to the bond length b0 = b2/bK , the characteristic ratio
C∞ = bK/b0, and the so called tube diameter dT = b

√
Ne. It has been suggested

recently [165] that both Ne and Nc can be calculated from ρ , b2 and a fixed length
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Table 4.1. The table contains representative experimental data and the simulation data (FENE
model) in dimensionless form. All experimental quantities listed are obtained from literature
data for i) the ratio between squared end-to-end distance and M, ii) the mass of a repeating unit
m, iii) the critical (from shear flow) and entanglement weights (from plateau modulus), and iv)
bond length b0 (or C∞) at temperature T , monomer density ρ (in g/cm3), monomer number
density n = ρ/m, packing length p (see text part). The last three columns contain universal
numbers, if the proposed scalings (4.6, 4.7) are valid

Polymer T ρ b0 [rrra] dT [rrra] C∞
Nc
100 pn

1
3 p/bK

N1/2
e

NcC∞

Neb2
K

C∞ p2
NcbK

C
3
2∞ p

PE 443 K 0.78 1.45 40.0 7.6 3.0 0.60 0.17 0.25 453 84
PS 490 K 0.92 1.51 88.6 9.9 7.0 0.92 0.29 0.26 454 81
PαMS 459 K 1.04 1.57 76.7 10.5 6.9 0.80 0.22 0.27 451 85
PIB 490 K 0.82 1.62 73.4 5.8 6.1 0.97 0.40 0.18 384 109
PDMS 298 K 0.97 1.70 74.6 6.0 6.6 0.92 0.36 0.17 417 119

FENE ε/kB 0.84 m
σ 3 0.97σ 1.3σ

√
Ne 1.79 1 0.66 0.40 0.018

√
Ne 3.4 Ne 103

p≈ 10−9m. See also Sect. 8.10.2 for a more geometrical approach on how to analyze
the entanglement network. In order to compare with the simulation results one has
to rewrite this finding in dimensionless form, which is actually only possible for Ne

and then states: Ne ∝ ρ p3 with a packing length p ≡ 1/[ρ
〈
R2/M

〉
] = 1/(nb2). This

definition ia rewritten as (comp. second last column of Table 4.5)

Ne ∝ C∞(p/bK)2 = [1/(nb3)]2 , (4.6)

or ndT b2 = ce with a proportionality coefficient ce = 21 ± 2, where n denotes
monomer number density. A corresponding relationship for Mc was also proposed
[162] (comp. last column of Table 4.5)

Nc ∝ C3/2
∞ (p/bK) = 1/(nb2

0 b) , (4.7)

in agreement with the simulation data, and a proportionality coefficient of about
c2

e/5 such that C∞
√

Ne ≈ 4Nc. Thus, one is led to the prediction Nenb3
0 > Nc for very

flexible chains with C∞ < 1.9. Predictions are summarized in Fig. 4.3. The possibility
for the existence of materials with Nc < Ne has been proposed earlier by Fetters et al.
[165]. The statement (4.7) has the advantage upon the one in [165] that it exclusively
contains dimensionless quantities, and thus allows for a verification by computer
simulation. Equations (4.6, 4.7) imply, that Nc is inversely proportional to the number
of monomers in the volume bb2

0, whereas
√

Ne is inversely proportional to the number
of monomers in the volume b3. Under equilibrium conditions the simulated FENE
chains exhibit an average bond length b0 =0.97, b=1.34b0, hence C∞ =b2/b2

0 =1.79
and p/bK =0.404. Relationship (4.6) predicts a simulation value Ne ≈ 120 which is
slightly above the one reported for Nc, a factor of 3–4 above the one reported for a
dynamical crossover in [139, 140], and just by a factor of 1.5 above the one reported
from direct measurements of the relaxation modulus [147].
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The reported findings underline the relevance of the FENE model in predicting
static, dynamic and flow behaviors of real polymers for arbitrary weights. Beside
the investigation of rheological behaviors of FENE melts the simulation of bead
trajectories allows to analyze, for example, the degree of flow-induced orientation
of chain segments, the validity of the so called ‘stress-optic rule’, the degree of
entanglement [167] anisotropic tube renewal, and therefore renders possible the test
of coarse-grained descriptions in later sections.

4.6 Linear Stress-Optic Rule (SOR) and Failures

Shear flow together with elongational flows are essential for the understanding of the
flow properties of fluids in complex flows [6, 18, 144, 168–170]. We wish to further
demonstrate the impact of the FENE chain melt model for the investigation of the
microscopic origins of experimentally observable transport and optical phenomena.
One of the aspects of practical relevance (in particular for rheooptics) concerns the
validity of the linear stress-optic rule (SOR), cf. (4.10), a proportionality between
stress and alignment (better, birefringence) tensors, which is fulfilled for polymer
melts under ‘usual’ conditions. Along with the spirit of this monograph, we focus
on studies in the nontrivial regime, where the proportionality is known to be at least
partially lost, i.e., at temperatures close to the glass transition temperature Tg or at
high elongation rates. To this end we discuss results obtained during constant rate
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Fig. 4.4. The single chain structure factor for stretched samples with equal values of flow bire-
fringence for samples fulfilling (bottom) or not (top) the SOR. The figure compares data from
SANS experiments (left) [166] and NEMD simulation (right). Due to the fact, that orienta-
tional relaxation is fast on a local scale, the overall extension of the polymer has to be much
larger for samples fulfilling the SOR, i.e., at high temperatures or low rates, in order to exhibit
the same local alignment. Adapted from [233]

uniaxial elongational flow followed by relaxation after reaching a constant stretch-
ing ratio [144]. Experimentally measured rate dependencies of the stress-optical be-
havior of amorphous polymers undergoing elongational flow at temperatures close
above Tg are reported in Fig. 4.5. For the lowest rates only small deviations from the
‘equilibrium curve’ have been detected, where the SOR is valid. For the higher elon-
gation rates the curves exhibit a stress overshoot, and a stress offset σoff for which
approximate values vs the reduced elongation rate aTε̇ are given in Fig. 4.5b. The
phenomenological description of the viscoelastic behavior of amorphous polymers
in the region where deviations of the SOR appear has been adjusted many times
within the last decades, cf. [41, 144] and refs. cited herein.

In the NEMD simulation, a time-dependent uniaxial isochoric homogeneous
elongational flow in x-direction with elongation rate ε̇ = ∂vx/∂x is imposed via
rescaling of the dimension of the central box [18,171]. Rheological information un-
der uniaxial flow is contained in the ‘uniaxial’ component of the stress tensor (4.2)
or ‘tensile stress’: σ ≡ σxx − (σyy + σzz)/2. The (2nd rank) alignment tensor, the
anisotropic second moment of the orientation distribution function of segments [4],

aaa[2] ≡
N−1

∑
i=1

aaa[2]
(i) ≡

〈
uuu(i)uuu(i)

〉
− 1

3
111 , (4.8)
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Fig. 4.5. (Left) Experimental data taken from for birefringence (
n) vs tensile stress
for a commercial polystyrene subjected to uniaxial elongational flow (open symbols, at
T = 102.7◦C, rate ε̇ = 0.2s−1) and subsequent relaxation (filled symbols). The crosses repre-
sent the behavior at high temperatures (‘equilibrium curve’ [163]). A ‘stress-offset’ and thus
a failure of the stress-optic rule is evident and interpreted through NEMD results for FENE
chains in the text part. (Right) Corresponding stress offset values vs the reduced elongation
rate ε̇aT . Adapted from [144]

is extracted directly as an ensemble average from the dyadic constructed of the
normalized segment vectors between beads (adjacent beads accordingly labeled)
uuu(i) ≡ rrr(i+1) − rrr(i) tangential to the chains contour. The alignment tensor is consid-
ered being proportional to the refractive index tensor of the fluid [41,172] whose rel-
evant information for the case of uniaxial elongational flow in x-direction we denote
by 
n ≡ axx − (ayy + azz)/2. The stress-alignment diagram, obtained by NEMD
in [144] compared very well with the experimental data, cf. Fig. 4.5a, and thus moti-
vated to investigate microscopic origin of the observed behavior. In particular, results
for diverse (intra/intermolecular, kinetic/potential, attractive/repulsive, non/nearest
neighbor) contributions to the stress tensor tensor as revealed in Figs. 5,6 of [144]
and also results for shear flow [17] imply that the stress tensor σσσ for the FENE chain
melts can be written essentially as the superposition of three terms

σσσ = σσσbonded +σσσnonbonded ,

σσσnonbonded ≈ C−1aaa[2] + σ̃σσ simple , (4.9)

where σσσbonded denotes the stress contribution from nearest neighbors within polymer
chains (bond pushing/stretching and/or bond orientation), C is the linear stress-optic
coefficient for the regime where the SOR is valid, and σ̃σσ simple is proportional to the
stress which is measured for a corresponding simple fluid by removing all bonds
(i.e. FENE springs) within the system. A value C = 0.32 has been independently
confirmed from NEMD simulation on weak shear flow in [17, 144]. See Fig. 4.6 for
a schematic drawing. For ‘small’ flow rates and/or temperatures large compared with
the ‘bonded’ (‘intra’, non-significant stretch) and ‘simple’ (proportional to flow rate)
contributions become small compared to the SOR contribution such that – according
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Fig. 4.6. Schematic drawing clarifying the origin of hysteretic behavior (deviations from the
stress-optic rule SOR) in the stress-optic diagram for uniaxial elongational flow of FENE
polymer melts according to [144]. The measured (total, tensile) stress is the sum of bonded
(intra) and nonbonded interactions, where the nonbonded interactions appear to carry a part
which is proportional to alignment (i.e. fulfilling the SOR) and another one, which is behaving
like the one for a corresponding simple ‘newtonian’ fluid (FENE bonds removed). The simple
and intra stresses become increasingly relevant with decreasing temperature (or increasing rate
due to the time temperature superposition principle). The intra stress dominates if bond stretch
(due to finite extensibility of chains) comes into play

to (4.9) the validity of the SOR is expected in these regimes. The nonbonded stress
hence originates the SOR for the microscopic FENE model. This finding has been
further discussed in [143, 144]. In this context one should notice, that the splitting
(4.9) is qualitatively different from the one into stresses of predominantly entropy-
elastic and energy-elastic origin as discussed in [173, 174].

4.7 Nonlinear Stress-Optic-Rule

The onset of failure of the linear stress-optical rule for polymeric liquids had been
often discussed, cf. [175], in terms of a critical stretch, critical stress, or critical di-
mensionless flow rate. If we wish to determine rheological properties solely from
optical data we need a nonlinear generalization of the linear SOR, since stretch,
stress and Deborah number are not directly available from the birefringence mea-
surements [176–178]. It seems, that the stress-optical coefficient is well character-
ized in terms of a single invariant of the refractive index tensor. Thus, if stresses
could be uniquely determined by optical means, the nonlinear stress-optical coeffi-
cient can be determined from a single stress-optical diagram in uniaxial elongational
flow where deviation from the linear SOR appears most ‘easily’. The linear SOR
connects the anisotropic stress tensor σσσ [2] = σσσ −Tr(σσσ)/3 and anisotropic refractive
index tensor nnn[2] [172, 179]

σσσ [2] = C−1nnn[2] , (4.10)

independent of frame, with a stress-optical coefficient C which is independent of nnn.
Here, the quantity σσσ [2] stands for the contribution to the total stress tensor due to
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the presence of polymers. Deviations from a linear SOR due to newtonian solvent
stresses, which are independent of the orientation of polymers, are not within the
scope of this section, they were discussed in Sect. 4.6. The same is true for deviations
which occur in the vicinity of the glas transition temperature [144].

It is often convenient to write down the linear SOR in both the laboratory com-
ponents and principal components (eigenvalues). Let us consider shear flow (with
directions: flow x, gradient y, vorticity z) and elongational flows. In these cases both
tensors σσσ [2] and nnn[2] are sufficiently characterized by three components nx,1,2 (labora-
tory frame) and nA,B,C (princpial frame) characterizing their traceless symmetric part.
In the following equations n is a placeholder for σ or n. For the relevant combina-
tions of laboratory components n.. (of stress or refractive index tensors) we introduce
the notation

nx ≡ nxy ,

n1 ≡ nxx −nyy ,

n2 ≡ nyy −nzz , (4.11)

such that

nnn[2] =
1
3

⎛

⎝
2n1 +n2 3nx 0

3nx n2 −n1 0
0 0 −(n1 +2n2)

⎞

⎠ (4.12)

can be used to rewrite (4.10). The eigenvalues of (4.12) define the princpial com-
ponents nA,B,C: nA/B = (n1 ∓ 3(4n2

x + n2
1)

1/2 + 2n2)/6, and nC = −(n1 + 2n2)/3.
The type of flow geometry decides on the most suitable choice of components.
For example, in uniaxial elongational flow (homogeneous flow field vvv(rrr) = κκκ · rrr
with κyy = κzz = −κxx/2) principal and laboratory frames coincide, we directly
measure the tensile stress σ1 (cf. notation in 4.11) and birefringence value n1.
In shear flow, these frames do not coincide. We usually measure directly shear
stress σx and first normal stress differences σ1 (beside σ2), the flow alignment
angle χ and birefringence value (difference between two principial refractive in-
dices) 
n ≡ nA − nB. Due to the identity (
n)2 = (
n)2(sin2(2χ)+ cos2(2χ)) =
(nA−nB)2 = (2nx)2 +n2

1, the measured quantities are related through the linear SOR
as follows (
n/C)sin2χ = 2nx/C = 2σx, and (
n/C)cos2χ = n1/C = σ1, such
that tan2χ = 2nx/n1. The equation for the shear component alone allows us to de-
termine most conveniently the stress-optical coefficient by plotting 
nsin2χ vs σx,
i.e., by measuring χ , 
n and just the shear stress σx for several shear rates.

The linear SOR for polymers directly connects birefringence data with rheologi-
cal properties. Experimental failures of the linear SOR have been reported by several
authors for elongational flows, but not yet for shear flows. Such a failure prevents the
determination of rheological properties by optical techniques as long as a nonlinear
generalization of the linear SOR is not available.

The only possible nonlinear generalization of the linear SOR with scalar coeffi-
cients reads (‘nonlinear SOR’)

σσσ [2] = C−1
1 nnn[2] +C−1

2 nnn[2] ·nnn[2] , (4.13)
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because all (anisotropic) powers of nnn[2] can be expressed in terms of two lower ones
where the prefactors of these terms depend on the invariants of nnn[2]. The related
theorem, cf. Sect. 10.7, named by Caley and Hamilton, is rooted in the fact that the
eigenvectors of nnni

[2] are independent of the power i. The linear SOR is recovered

for C1 = C and 1/C2 = 0. The coefficients C1,2 = C1,2(I2, I3) are functions of the
second invariant I2 = Tr(nnn[2] ·nnn[2])/2 and third invariant I3 = det(nnn[2]) of the traceless
refractive index tensor nnn[2] (for which I1 = Trnnn[2] vanishes). The invariants can be
also expressed in terms of the components defined in (4.11) as follows

I2(nnn[2]) =
1
3
(3n2

x +n2
1 +n1n2 +n2

2) ,

I3(nnn[2]) =
1

27
(n1 +2n2)(9n2

x +2n2
1 −n1n2 −n2

2) . (4.14)

The components cx,1,2 of the traceless squared refractive index tensor (2nd matrix
on the right hand side of (4.13)) become cx = nx(n1 +2n2)/3, c1 = n1(n1 +2n2)/3,
and c2 = n2

x − n2(2n1 + n2)/3. With the help of (4.12) we can immediately write
down the nonlinear equation (4.13) in terms of components. In order to evaluate
C1,2(I2, I3) we need to study a huge number of flow situations, such that I2,3 are varied
independently. From a practical viewpoint, however, this is an impossible task. For
uniaxial elongational flows, for example, both invariants are strictly related to each
other. For shear flows, we heavily explore a region far from this ‘path’. Next, we
make use of the model [175,180] to obtain an explicit expression for the stress-optic
coefficient.

4.8 Stress-Optic Coefficient

This section discusses the stress-optic coefficient based on the thermodynamically
admissible reptation model for fast flows of polymer melts [180]. This model in-
cludes the effect of chain stretch, double reptation, convective constraint release –
ingredients which are known to be important when modeling the rheology of poly-
mer melts, as discussed in [175]. The model uses four degrees of freedom, a unit
segment vector on the primitive path (uuu), the segment contour position s, and the
stretch variable λ . These quantitites will be defined below. (see also Fig. 4.7)

Stress

The model [175, 180] provides a microscopically (finitely extendable nonlinear
chain) inspired expression for the (traceless polymeric) stress tensor of the following
form

σσσ (2) = 5G

(
1+

λ 2
max(λ 2 −1)
λ 2

max −λ 2

)
aaa(2) (4.15)

with G = 3ZnpkBT/5, polymer number density np, and, in equilibrium, σσσ eq
(2) =

ZnpkBT 111 = (5/3)G111, and σσσ eq
[2] = 0, of course. The underlying model considers a



4.8 Stress-Optic Coefficient 45

1

2

Z

bK

1
2

3

NK

freely jointed chain

primitive path

u

Fig. 4.7. Schematic drawing introducing notation

primitive path of a macromolecule made of Z entanglement segments of equal, but
not fixed, length. In order to account for a substructure between adjacent entangle-
ment points along the primitive path one further considers, as depicted in Fig. 4.7, a
freely jointed (Kuhn) chain with NK segments of equal and constant length bK be-
tween each of these entanglement points, as in [178, 179, 181, 182]. The end-to-end
vector of a Kuhn chain, which is the segment vector of the primitive path, we denote
as RRRK . An unconstrained Kuhn chain follows Gaussian statistics, i.e., the equilib-

rium end-to-end distance is
〈
R2

K

〉1/2
eq =

√
NK bK , where bK is known as Kuhn length

and, as well as NK , determined by the chemistry of the polymer. In equilibrium, but
also out of equilibrium, the end-to-end distance determines, according to Fig. 4.7,

the mean length le of an entanglement segment le ≡
〈
R2
〉1/2

. While we specified
already the equilibrium value of le, its maximum value le = NKbK equals the max-
imum end-to-end distance of the Kuhn chain. The contour length of the primitive
path is simply L = Z le, as inferred from Fig. 4.7. The quantity Z is proportional to
the molecular weight and related to the overall number of Kuhn elements N per chain
by Z = N/NK . It is then convenient to introduce a dimensionless stretch variable for

the primitive path λ ≡ L/Leq =
〈
R2

K/NK
〉1/2

/bK . It approaches unity in equilibrium,
and its maximum value is determined by the number of Kuhn steps,

λmax ≡ Lmax/Leq =
√

NK . (4.16)

Birefringence

Kuhn and Grün [181] calculated the optical birefringence for a freely jointed chain
with fixed end-to-end distance (le in our notation), i.e., eventually out of ‘equilib-
rium’. Their result relates optical anisotropy of the single macromolecule of Fig. 4.7
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to the anisotropy of the Z segments of the primitive path. We denote with uuu the
unit vector tangential to the contour of the primitive path, i.e., parallel to the Kuhn’s
end-to-end distance between entanglement points, as also shown in Fig. 4.7. The
deviatoric refractive index tensor nnn[2] then reads

nnn[2] = nmax

(
1− 3x

L−1(x)

)
aaa[2] , (4.17)

where another useful quantity, the relative strength of the stretch variable,

x =
λ

λmax
=

〈
R2

K

〉1/2

NKbK
(4.18)

has been introduced. In (4.17), aaa[2] and nnn[2] denote macroscopic measurable align-
ment (orientation) and refractive index tensors, respectively, and L−1 is the inverse
of the Langevin function L with L(x) = coth(x)− x−1. One has the series expansion
L−1(x) = 3x + 9x3/5 + o[x5] for x � 1 and L−1(1) = ∞. The alignment tensor is
obtained as an average over all segments of the primitive path.

In the limit of maximum stretch, where x = 1 and where all segments are
fully aligned in the same direction, say eeex, we have nnn[2] = nmax(eeexeeex − 111/3) since
L−1(1) = ∞. From (4.15), together with (4.17), we obtain nmax = (25/3)λ 2

maxC G =
(25/3)NKC G. The coefficient C depends solely on the chemistry of the monomers
and is considered as independent on molecular weight, and deformation state of the
polymer [179, 181, 183].

Nonlinear Stress-Optical Coefficient

By making use of the expression for the optical birefringence tensor (4.17) the stress
tensor (4.15) is readily rewritten in terms of the relative stretch variable x = λ/λmax

of Sec. 4.8 as

σσσ [2] = C−1
1 nnn[2] ,

C−1
1 = C−1 x2

(1− x2)
3
5

(
1− 3x

L−1(x)

)−1

, (4.19)

where C is uniquely defined such that the linear SOR with the stress-optical coef-
ficient C holds (i.e. C1 = C for λ = 1) and NK � 1 has been assumed to arrive at
(4.19). The same expression, (4.19), for C−1

1 arises from an alternate model summa-
rized in the footnote2. Concerning the nonlinear SOR (4.13) we see from (4.19), that
these particular models predict C−1

2 = 0 and C1 = C1(x), thus x can be expressed in

2 Another approach to the orientation and stress in polymer melts has been followed re-
cently [184]. Instead of using stretch and orientation variables as independent quantities, as
done in Sect. 2.1 for polymer solutions, the authors start from an equation for the end-to-
end distance vector between entanglements RRR. In this section, the average 〈RRRRRR〉 had been
decoupled into the separate averages aaa(2) = 〈RRRRRR〉/

〈
R2

〉
and λ 2 =

〈
R2

〉
/L2

eq = Trggg with
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terms of the invariants I2,3, if a nonlinear generalization of the SOR applies. A good
alternate representation of (4.19) to within 1% for all 0 ≤ x ≤ 1 is

C−1
1 ≈C−1

(
1−2x2/5

1− x2 − c

)
. (4.23)

with a tiny correction c = 3(NK −1)−1/5 which ensures that C1 = C in equilibrium.
Equation (4.9) offers a crude but useful approximation to the stress in polymer

melts. It allows to predict rheological properties for the many chain FENE model,
based on a single chain model.

In [144] the degree of stretch and orientation of the polymer chains on different
length scales (and ‘collective’ deformations) have been also measured and analyzed
in order to allow for a critical test of alternative pictures which were proposed earlier
to describe deviations from the SOR. Upon these models (which have been ruled out)
are those which assume stretching of few selected segments, thus leaving the mea-
sured anisotropy of chains largely unchanged. Just at a late stage of elongation when
segmental stretching leads to a strong increase in σbonded, local inhomogeneities in
bond stretchings/contractions are observed while expression (4.9) remains valid.

Experimentally, flow induced alignment on different length scales is measured
via the single chain structure factor Ssc (from deuterated samples, definition provided
by ( )) and flow birefringence or infrared dichroism. While the latter quantities
measure the alignment tensor ((4.8), probing the anisotropy of segments), at small
wave numbers (Guinier regime), Ssc resolves the gyration tensor. cf. Fig. 4.4 for both
experimental and FENE chain data for an elongated polymer melt.

ggg ≡ 〈RRRRRR〉
L2

eq
= λ 2aaa(2) , (4.20)

as in (2.5). The proposed dynamics of ggg is described by the following equation [184]

dggg
dt

= κκκ ·ggg+ggg ·κκκT − f
τ

ggg − g̃
3τR

111 , (4.21)

with f ≡ (λ 2
max −1)/(λ 2

max −λ 2), g̃ ≡ f λ 2 −1, and

1
τ
≡ 2

τd
+
(

1
τR

− 2
τd

)
βg

1+βg
, (4.22)

where β ≥ 2 (we use β = 2 as in [184]). We can solve (4.21) for ggg, compute λ from its
trace (thus also have access to x = λ/λmax since λmax is a model parameter) and obtain the
stress tensor using (4.17) and (4.19), with aaa[a] = aaa(2) − 111/3. Accordingly, the equation of
change for the trace of ggg, derived from (4.21), does not contain τ , but just the Rouse time
τR as for the model in the previous section. The stress tensor for this model also coincides
with the one used in the current section, (4.15), if 〈uuuuuu〉 is replaced by its analog, ggg/Trggg.
For large NK , also the equations of change for the stretch variable correspond to each other,
where τR = τs/2. Hence, the formula for the nonlinear stress-optic coefficient C−1

1 , given
in (4.19), remains valid. From the analysis of this model, (4.20–4.22), we arrive at the same
conclusion – even quantitatively – as for the model outlined in the current section.

4.20

.5 31
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4.9 Interpretation of Dimensionless Simulation Numbers

A word of caution concerning the interpretation of dimensionless results is in order.
Simulation has to deal with quantities in terms of reference units for mass, length
and energy. These have to be obtained by comparing experiment with simulation
and provide the basic length (σ ) and energy (ε) scale of the Lennard–Jones po-
tential as well as the mass (m) of a bead in solving Newton’s equation. Although
some freedom exists in how to adjust three dimensionless units, an accepted one
is to obtain the reference energy from the measured temperature εre f = T kB, the
bead mass from the real Nc divided by the simulated one, and σ2 from the ratio be-
tween measured and simulated end-to-end-distances. Sample data such as reported
in Table 4.5 motivates obtaining reference units for any simulated quantity for the
study of particular materials. For polyethylene (polystyrene), e.g., we deduce a ref-
erence length σ = 5.3(9.7) A

◦
, a reference mass m = 42.3(364) g/mol, and a refer-

ence energy ε/kB = 443(490) K. From m,σ ,ε one immediately obtains reference
values for any other quantity such as viscosity, time, stress etc. by dimension analy-
sis:

√
mε/σ2 = 0.07(0.07) mPas, σ

√
m/ε = 1.8(9)× 10−12 s, 40 (7.5) MPa, 0.46

(0.67) g/cm3, 553 (109) GHz. Corresponding reference values for other polymers
are obtained along this procedure. Care has to be taken when predicting quantities
which are sensitive to the ratio between the systems longest and shortest relaxation
time (τNc/τ1) such as the shear viscosity (proportional) and the shear rate at the
onset of shear thinning (inversely proportional). To illustrate this, for polystyrene
the simulation predicts the correct zero shear viscosity η0 =

√
mε/σ2Γ η∗

0 =68 Pas
(at N = Nc) for a factor Γ = 104 which happens to be equal to the ratio of relax-
ation times τNc/τ1 = 104. Accordingly, from the onset of shear thinning at shear rate
γ̇ =10−4 obtained for the FENE chain melt at N =Nc (see Fig. 4.1) we predict for
the real shear rate (for polystyrene) γ̇c = γ̇∗(σ/Γ )−1

√
ε/m = 1100 s−1 which is

again in agreement with experimental findings [164]. As a result, the shear stress
at onset of shear thinning is correctly reproduced without adjustment by Γ , i.e.,
(ηcγ̇c)/(η∗

c γ̇∗c ) = 7.5 MPa for polystyrene.



5

Chain Models for Transient
and Semiflexible Structures

In order to be prepared for the analysis of the flexible FENE-C (FENE model
which allows for scission/recombination), FENE-B (which allows for bending stiff-
ness) and FENE-CB fluids (both bending stiffness and scission) to be discussed
below, we summarize results for the configurational statistics of wormlike chains
(WLC) in external fields by using the method of functional integrals (FI) in quasimo-
mentum space. From the correlation functions, statistical properties of WLCs, such
as gyration radius and scattering functions can be obtained. By varying the bend-
ing rigidity the WLC exhibits a crossover from an ideal Gaussian chain to a rodlike
chain. Simulations on the WLC model are widely available, see e.g. [185–188].

In 1960 Edwards [189] proposed a continuum model for polymer chains. For the
ideal Gaussian chain, the FI can be solved exactly, and after taking excluded volume
into account, a perturbation expansion as well as the renormalization group method
are used to study the configurational statistics of polymer solutions [190–194].

5.1 Conformational Statistics of Wormlike Chains (WLC)

The wormlike chain (WLC) model was first proposed by Kratky and Porod [195]
and extended to the continuum level in [190, 191]. It is described by a statistical
weighting factor p for a polymer contour path rrr(s) with contour position s (imaged
as time) 0 ≤ s ≤ L:

pWLC(rrr(s)) ∝ exp

(
− 3

2l

∫ L

0
uuu2(s)ds− κ

2

∫ L

0
u̇uu2(s)ds

)
, (5.1)

where L is the contour length of the chain, κ the bending elastic coefficient, uuu(s) ≡
∂ rrr(s)/∂ s the differential (tangent) of the curve, and u̇uu ≡ ∂uuu/∂ s. Using the constraint

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 49–76 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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|uuu(s)|= 1 a series solution for the tangent distribution (Green’s function) G(uuu,uuu′;L,0)
has been derived in [190]. Releasing the constraint and considering stretchable
chains, end-to-end distances and the tangent distribution have been derived by using
the method of Feynman [191, 196]. Later it turned out that functionals in momen-
tum space often used in field theories are a convenient method of studying properties
of WLCs [31]. For a uniform system, the configurational statistics of WLCs can be
accessed by considering the correlation function

C(RRR1,rrr2;s1,s2) ∝ 〈δ (rrr(s1)−RRR1)δ (rrr(s2)−RRR2)〉
∝ 〈δ (rrr(s1)− rrr(s2)−RRR)〉 ∝ C(RRR;s) (5.2)

where RRR = RRR1 −RRR2, s = s1 − s2, 0 ≤ s1,s2 ≤ L and 〈..〉 denotes a statistical average
over various configurations of the chain by FI. The correlation function (5.2) is ac-
tually more fundamental than the end-to-end functions for WLCs [197], caused by
chain end effects, except in the limit of Gaussian chains (κ → 0).

5.1.1 Functional Integrals for WLCs

We consider a polymer chain which is described by a three-dimensional curve rrr(s)
with 0 ≤ s ≤ L. For convenience, the infinite long chain limit is taken then the nor-
mal mode coordinate, i.e., the Fourier transformation of rrr(s) is obtained as [198]
rrr(s) = 1/

√
2π r̂rr(k)eiks dk, satisfying r̂rr(k) = r̂rr∗(−k) because rrr(s) is real. The statisti-

cal weighting factor pWLC[r̂rr(k)] for the WLC is, according to (5.1),

pWLC[r̂rr(k)] ∝ exp

(
− 3

2l

∫
k2r̂rr2(k)dk− κ

2

∫
k4r̂rr2(k)dk

)
. (5.3)

Physical properties X are obtained by FI in the quasimomentum space:

X =
∫

D[r̂rr(k)]X [r̂rr(k)] p[r̂rr(k)] , (5.4)

where
∫
D[r̂rr(k)] denotes the FI [199]. With regard to the correlation function (5.2)

one has

δ ((rrr(s)− rrr(0))−RRR) =
(

1
2π

) 3
2
∫ ∞

−∞
exp

(
iwww ·

[
1√
2π

∫ ∞

−∞
r̂rr(k)(eiks −1)dk−RRR

])
d3w (5.5)

and the tangent of the curve at contour position s reads

uuu(s) = (
√

2π)−1
∫ ∞

−∞
ikr̂rr(k)expiks dk . (5.6)

Using standard methods [198,200], one obtains for the correlation function (5.2) for
WLC from (5.3)
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C(RRR,000;s,0) =
∫

D[r̂rr(k)]δ ((rrr(s)−rrr(0))−RRR) pWLC ∝ exp(−R2/4Γ1) , (5.7)

where Γ1 = l{s−α−1(1− e−sα)}/6, α2 ≡ 3/(κl), and therefore (5.7) simplifies to
the expression exp{−3R2/(2ls)} for ideal Gaussian chains. There is a variety of
related correlation functions which have been discussed [31]. For example, one may
consider the adsorption on a surface where the polymer has a fixed orientation UUU0

at rrr(0). The orientation distribution function of the tangent UUU at position position s
becomes

C(UUU ;s) =
∫

D[r̂rr(k)]δ (UUU(s)−UUU) pWLC[r̂rr(k)] ∝ exp[−U2/4Γ 2] , (5.8)

independent of s due to translational invariance.

5.1.2 Properties of WLCs

From (5.7) we calculate the average monomer-monomer distance (MMD) separated
by the contour distance s for WLC

〈
R2〉(s) = l

(
s− 1

α
[1− e−sα ]

)
,

〈
R4〉(s) =

5
3

l2
(

s− 1
α

[1− e−sα ]
)2

. (5.9)

Equation (5.9) are also obtained in [197, 198] and differentiate from the average
end-to-end distance obtained in [191]:

〈
R2
〉
(L) = l{L− (2α)−1 tanh(Lα)}, which

demonstrates the difference between basic end-to-end and correlation functions
through an end-effect. In order to patch up the difference, an additional term de-
scribing the end effect has been added to the Hamiltonian in [197]. For Gaussian
chains, i.e., α → ∞, one recovers from (5.9):

〈
R2
〉

= lL, and for the opposite limit
of rodlike chains, i.e., κ → ∞,α− > ∞ the WLC at first glance give incorrect results
and in order to make the model valid, an additional condition of the average length
of the chain being L should be used, i.e., as discussed in detail by Freed [191], let∫ L

0 ds̃ =
∫ L

0

〈
(uuu(s) ·uuu(s))1/2

〉
ds = L, where ds̃ is differential arc length. Then we will

obtain constraint on the parameters, l and κ , by (5.8)

〈
u2〉 =

∫
u2G(uuu;L)duuu
∫

G(uuu;L)duuu
= 6Γ2 =

3l
4κ

= 1 , (5.10)

being equivalent to l = 4κ/3. For example, if κ is selected as the independent para-
meter l will depend on κ and will have a meaning of an effective monomer length
Kuhn length!. Another reasonable constraint can be obtained from 〈|uuu|〉 = 1 which
leads to l = 3π2κ/16. A different is derived by Freed [191] (l = κ/3 obtained from
the end to end tangent distribution function, and in [197], l = (4/3)κ is derived by
taking a limit on (5.7). Substituting l = 4κ/3 into (5.9) we have

〈
R2〉 = l{L− l(1− e−2L/l)/2} , (5.11)

and l is proportional to persistence length (see below). For κ → ∞ we now properly
obtain the result for a rodlike polymer

〈
R2
〉

= L2.
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Persistence Length

The persistence length lp for finite contour length is obtained along the same line
using the definition:

lp ≡
∫

Rcosϑ C(RRR,000,UUU0;s,0)d3Rd3U0

(
∫

C(RRR,000,UUU0;s,0)d3Rd3U0)
, (5.12)

i.e., lp = φ1 〈|UUU0|〉Γ −1
2 and therefore lp = [1− exp(−sα)]/α , where α is given after

(5.7), which is similar to the result of Porod-Kratky [190]. For s → ∞ one has lp =
α−1 = (2/3)κ = l/2.

Radius of Gyration

For the radius of gyration, defined as R2
G = 1

2L2

∫ L
0 ds

∫ L
0 ds′

〈
(R(s)−R(s′))2

〉
, we

obtain, by making use of (5.9)

R2
G =

lL
6
− l2

4
+

l3

4L2

[
L− l

2
(1− e−2L/l)

]
. (5.13)

For α → ∞ (5.13) becomes R2
G = lL/6, which is just the ideal Gaussian chain radius

of gyration. When α → 0, using l = 4κ/3 we have R2
G = αlL2/24 = L2/12 which

is just the expected result for a rodlike polymer. But there is notable peculiarity in
the statistics when approaching the rodlike limit, as will be seen from the scattering
function.

Scattering Function

In order to compare the result for the WLC with the ones for ideal Gaussian chains
and rodlike chain, let us write down the corresponding isotropic scattering functions,
for the Gaussian chain

I(x) = N
2
x2 (x−1+ e−x) , (5.14)

where x ≡ k2R2
G, and for the rodlike polymer,

I(x) = L2 1
6x

{2
√

3xSi(2
√

3x)+ cos(2
√

3x)−1} , (5.15)

where Si(x) =
∫ x

0 (sin(t)/t)dt.
The scattering function for WLC is obtained from the Fourier transform of the

correlation function C(kkk,UUU ,UUU0;L) and gives

I(k) = 2N/(L2)
∫ L

0
(L− s) exp{−k2l[s− (1− exp(−sα)/α]/6}ds . (5.16)

If we let κ → 0, we see that the Gaussian limit is reobtained. But if we let κ →∞, this
doesn’t lead to the above I(x) for rodlike chains. For that reason, the demonstrated
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approach leads to a so called Gaussian rodlike polymer’ for κ → ∞. Properties of
the presented model have been also worked out for the case of WLC in external
fields [31]. Finally, we mention a difference between the approaches discussed here
and the one by Saito et al. [190]. We obtain

〈
uuu(s) ·uuu(s′)

〉
≈

⎧
⎪⎨

⎪⎩

1−a−1 ≈ e
− 2

3
|s−s′ |

lp , |s− s′| � lp

a−1/3 ≈ e
− |s−s′ |

lp , |s− s′| � lp,

, (5.17)

which means, that for two segments far from each other these two models are con-
sistent.

For molecules whose intrinsic rigidity against twist is important to interpret re-
sults the statistics to be presented for WLC had been extended to chiral ribbons [201].

5.2 FENE-C Wormlike Micelles

Aqueous surfactant solutions are known to form wormlike micelles under certain
thermodynamic conditions, characterized by surfactant concentration, salinity or
temperature In the semi-dilute solution regime these linear and flexible particles,
with persistence lengths varying from 15 to 150 nm form an entangled viscoelas-
tic network. In equilibrium their behavior is analogous to that of polymer solutions
and their properties obey the scaling laws predicted for the semi-dilute range [202].
See [203] for the prediction of more general surfactant microstructures (such as bi-
layers), their shapes, and shape fluctuations. In contrast to ordinary polymers, worm-
like micelles can break and recombine within a characteristic time (breaking time)
and their length distribution is strongly affected by flow. Phenomena such as shear
banding structures, the variety of phase transitions and thixotropy are not completely
understood [179]. This section contributes to this debate with a mesoscopic concept.
There is huge number of both macroscopic and microscopic models available which
deals with the prediction of the wormlike micellar phase, or a full phase diagram,
changes in topology, etc. To summarize these works is certainly outside the scope
of this monograph (see, e.g. the book by Gelbart, Ben-Shaul and Roux [27]). For a
review on simulations of self-assembly see [28].

Wormlike micelles, with certain similarities to equilibrium polymers [204] can
be modeled on a mesoscopic scale which disregards amphiphilic molecules and
their chemistry by a modified version of the FENE potential which allows for scis-
sions and recombinations of worms, the so called ‘FENE-C’(ut) for which the
ıPotential!FENE-C connector force between adjacent beads is parameterized by QC:

FFFFENE−C(r) = FFFFENE(r), r ≤ QC , (5.18)

and FFFFENE−C = 0 for r ≥ QC with a rather irrelevant smooth interpolation at QC

[205–207]. FENE-C reduces to FENE for QC = Q0 and QC is trivially related to
the scission energy (energy barrier for scission). In this section we will analyze this
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model both numerically (via NEMD) and analytically. The analytic model is based
on an expression for the free energy of Gaussian chains, modified by a term which
takes into account a finite scission energy in order to describe micelles, and extended
to flow situations. In equilibrium, the length distribution then depends on two pa-
rameters, namely the micellar concentration and the scission energy. The shape of
this distribution has a significant influence on flow alignment and the rheological
behavior of linear micelles. The analytic approach to be discussed first exhibits sim-
ilarities to the calculation of products in polymerization kinetics and to association
theory [4, 208, 209]. Results will be compared with the exact numerical solution in
Sect. 5.2.3. The example in the next section has been chosen for illustrative pur-
pose. Shear thickening rather than thinning occurs for a wide range of micellar sys-
tems, cf. [210, 211] which is also obtained via a modified FENE-C which includes
bending stiffness (FENE-CB models) and allows for the formation of networks. Re-
cently, shear-thickening has been observed for the FENE-Cx model (implemented
as transient polymer network, ie. ‘FENE-C∞’), where instead of bending additional
FENE-C cross-linkers were used [212].

5.2.1 Flow-Induced Orientation and Degradation

Consider an ideal solution of linear chains (micelles) being modeled as bead-spring
chains. We assume that each bead can have two bonds and we exclude ring forma-
tion. We consider a total number of Nb beads at (micellar) concentration c, where a
bead represents a number of chemical units as already discussed in this monograph.
Let NM ≡ cNb denote the number of beads able to form linear chains (‘M-beads’)
and which can associate and dissociate, and NS ≡ (1− c)Nb the number of solvent
particles (‘S-beads’). The system is then characterized by the number ni of micellar
chains made of i beads and c. At equilibrium the distribution of chains results from
the grand canonical partition function

Ξ =
∞

∑
n1=0

. . .
∞

∑
nN=0

(q1λ1)n1(n1!)−1 . . .(qNλN)nN (nN!)−1 =
N

∏
i=1

eqiλi , (5.19)

where qi and µi are the partition function and activity, respectively, of an i-chain
(‘subsystem’ i), λi = exp(β µi), and β = 1/(kBT ). For the average number of i-chains
one has 〈ni〉 = λi∂ (lnΞ)/∂λi = λiqi. Let us require that the various subsystems are
in a chemical equilibrium with each other, i.e., µi = iµ1. Thus, with λ ≡ λ1, we have
〈ni〉 = λ iqi. For an i-chain the Hamiltonian H is formulated in terms of momentum
and space coordinate of the center of mass, pppc and rrrc, respectively, and i− 1 inter-
nal momenta and coordinates PPPk,QQQk with (k = 1, . . . , i− 1). We choose the internal
coordinates such that QQQk denotes the kth bond vector between beads k and k + 1.
Carrying out the integration over momenta (Maxwell distribution) and coordinates
yields

∫
exp(−βH)d pppcdPPPi−1drrrcdQQQi−1 = (2πmkBT )3i/2V qint

i , where m is the mass
of a single bead and V is the total volume of the solution, qint

i denotes the inter-
nal configurational integral, and we can write qi = V qint

i Λ−3i, with the thermal de
Broglie wavelength of a bead Λ . In order to simplify the structure of the follow-
ing equations we equal the masses of M- and S-beads. For the calculation of the
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configurational integral we introduce a configurational distribution function f . The
configurational integral is related to the free energy via qint

i = exp(−βAint
i ), with

Aint
i =

∫
dQQQi−1 fi(kBT ln fi +Ui), where Ui denotes the internal energy of an i-chain.

In order to keep this example simple, we assume Gaussian distributions, i.e.

fi(QQQ[i−1]) =
1

(2π)3(i−1)/2

1

|CCC−1
i−1|1/2

× exp

(
−1

2
QQQ[i−1] ·CCCT

i−1 ·QQQ[i−1]
)

, (5.20)

with QQQ[i−1] ≡ (QQQ1,QQQ2, . . . ,QQQi−1). The 3(i− 1)× 3(i− 1) matrix of covariances is
given by CCC−1

i−1 = 〈BBBi〉 with (BBBi)µν ≡ QQQµ QQQν (µ ,ν = 1, .., i−1) and | · · · | denoting a
determinant. The tensor BBBi becomes anisotropic under flow conditions. In the ‘slow
reaction limit’ in which changes in micellar size occur on a time scale long compared
to orientational diffusion of the segments in presence of flow, one can assert that the
deformation energy can be added to the micellar free energy [213]. The internal
energy of i-chains is then given by

U = −(i−1)Esc +
1
2

i−1

∑
j=1

H 〈Q2
j〉 , (5.21)

where Esc is the scission energy, i.e. Esc is the energy required to break a chain
(independent of its length, for a more general case see [214]). For the moment we
consider in (5.21) the FENE-regime where bond stretching is not relevant which is
especially reasonable for FENE-C chains for which QC is considerably smaller than
Q0. Inserting (5.20, 5.21) into the above integral expression for the free energy and
performing the integration yields

Aint
i =−3

2
(i−1)kBT (1+ ln(2π))− 1

2
kBT ln |〈BBBi〉|−(i−1)Esc +

H
2

i−1

∑
j=1

〈Q2
j〉 . (5.22)

and, as such, is similar to an expression given by Booij [215]. Note that the last term
on the rhs is proportional to the trace of the pressure tensor for an i-chain within the
Rouse model, H ∑i−1

j=1〈Q2
j〉 = V Tr(PPPi). Strict usage of the above relationships leads

to

〈ni〉 = V

(
λ

Λ 3

)i

(2π)3(i−1)/2|〈BBBi〉|1/2 e((i−1)(βEsc+ 3
2 )−β V

2 Tr(PPPi)) . (5.23)

This expression provides a basis to analyze the length distribution for both equilib-
rium and nonequilibrium states. One can evaluate (5.23) in equilibrium by making
use of expressions resulting from the Rouse model [4, 216–218]. The number of
i-chains is then given by 〈ni〉0 = V (λ/Λ 3)izi−1, where

z ≡ (2π)3/2 | 〈QQQQQQ〉0 |1/2 eβEsc =
(

2πa2

3

)3/2

eβEsc , (5.24)

inherits the scission energy and represents an apparent volume of a bead. For the
number density of micellar i-chains ρi ≡ 〈ni〉0/V we arrive at ρi = ρ i

1zi−1. Through
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the constraint of conserved total density of beads ρ = Nb/V the density ρ1 of
1-chains can be expressed in terms of the concentration c and z in (5.24) by using
rules for geometric series as

ρc ≡
N

∑
i=1

iρi =
ρ1

(1−ρ1z)2 . (5.25)

5.2.2 Length Distribution

The length distribution in equilibrium is thus determined by the scission energy
and concentration. and may also be rewritten in exponential form, 〈ni〉0 /〈ni−1〉0 =
ρi/ρi−1 = ρ1z. The normalized equilibrium distribution function C0(L) of L-chains
is then equivalent to the expression derived by Cates [219] and reads

C0(L) =
1

〈L〉0
exp

(
− L
〈L〉0

)
. (5.26)

From ρi = ρ i
1zi−1 we obtain the average equilibrium length (number of beads) of the

micelles 〈L〉0 ≡ ∑N
i=1 iρi/(∑N

i=1 ρi) = (1−ρ1z)−1. Solving for ρ1 leads to the relation
〈L〉2

0 −〈L〉0 = zρc, which – itself – is solved (for positive lengths L) by

〈L〉0 =
1
2

+
(

1
4

+ zρc

)1/2

. (5.27)

For a simple fluid which is, within this framework, modeled by an infinitely large
negative scission energy (FENE limit) we obtain the correct result 〈L〉0 = 1 which
we call a generalization of the square root dependence obtained earlier. The gener-
alization is important in reproducing the results from the microscopic model as well
as to describe experimental results, for which at low concentrations the dependence
of the micellar length on concentration seems to be quite weak.

For the case of FENE-C chains with Qc close to Q0 expressions become slightly
more complicated, cf. [30]. More precisely, the ratio ρi/ρi−1 increases weakly with i
and therefore the length distribution C0(L) decreases weaker than exponentially with
L. The concentration dependence of the average micellar length 〈L〉0 is more pro-
nounced than the square root behavior given in (5.27). The formalism presented also
allows, for FENE-C chains, to calculate the variation of the length distribution with
the flow rate, but the treatment becomes considerably more lengthy due to correla-
tions between the bond vectors and the dependence of the pressure tensor on flow
parameters.

Results presented in the figures have been obtained numerically using the above
‘algorithm’ (an extended version can be found in [30]). The second moment 〈QQQQQQ〉
becomes anisotropic, the covariance matrix |〈BBBi〉| represents the shear induced ori-
entation of segments. The concentration c is obtained numerically by the summation
in (5.25). Varying the shear rate a maximum in the distribution of micellar lengths
C(L) occurs, which shifts to shorter chain length with increasing shear rate. Addi-
tionally the distribution becomes less broad with increasing rate. The flow align-
ment angle χ is expressed through the viscosities (assuming validity of the SOR) by
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χ = π/4 + tan−1[γ̇Ψ1/(2η)]. We evaluate the material quantities such as the shear
viscosity η from expressions involving |〈BBBi〉|/|〈BBBi〉0| and ρ1(γ̇) [30]. It turns out that
even for high scission energies the alignment angle does not decrease with increasing
shear rate towards zero, because, in opposite to ‘classical’ polymers, here the average
length of chains decreases implying a flow alignment angle which is just moderatly
decreasing.

A simplified approach to the analytic treatment of the FENE-C model subjected
to flow may neglect the variation of the determinant of the covariance matrix with
the shear rate, as done in [4, 215] for (classical=non-breakable) polymers, The ap-
proximation is justified by the fact that the determinant is of the order of γ̇1/2 which
is small compared with the exponential of the trace of the pressure tensor. From the
approximation follows an increase of the scalar pressure p =Tr(PPPi)/3 with shear rate
γ̇ , i.e. ∂ p/∂ γ̇ > 0 which influences the given result (5.23) as if one would decrease
the scission energy (see 5.22, 5.23). A decrease of that energy is connected with a
decrease of the average length according to (5.24, 5.27) and hence with a decrease
of the viscosity [4].
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Fig. 5.1. MD results for average micellar length 〈L〉0 vs. the scission energy βEsc for FENE-C
micellar solutions (from 4% to 100%) in equilibrium. Lines: the mesoscopic result (5.27). The
fit is parameter-free

5.2.3 FENE-C Theory vs Simulation, Rheology, Flow Alignment

Let us now compare the predictions of the non-simplified analytic model described
in the foregoing sections with NEMD simulation results for the full FENE-C model
(temperature is kept constant at kBT/ε = 1, cutoff radius of the FENE-C potential
chosen as R0 = 1.13σ implying Esc = 8.09, bead number density n = 0.84). Results
can be compared without any remaining adjustable parameter, see Figs. 5.1, 5.2,
and 5.3 As can be seen clearly from Fig. 5.2 only the dependence of average length
〈L〉 divided by Esc (representation motivated by (5.27)) on concentration is not in
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Fig. 5.2. MD results for the average micellar length 〈L〉0 (reduced form) vs. concentration c as
compared with the mesoscopic result (5.27). The expression of Cates [219] predicts a constant
slope in this representation
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Fig. 5.3. MD results for the normalized equilibrium distribution of micellar length C0(L) for
three samples at different concentrations c. Lines: the mesoscopic result (5.26) with same
parameters as for the microscopic model

ideal agreement, but a tendency to a small slope at low concentrations is obvious.
The slope at high concentrations is around 0.8 for the systems studied here. All
other – nonequilibrium – quantities shown in Figs. 5.4–5.7 are described well.

Through (5.23) a phase separation between the short chain and long chain sys-
tems can be expected if the sign of ∂ p/∂ γ̇ depends on the length of chains as it has
been detected for the microscopic FENE chain melt in [17]. Various hints for such a
phase separation exist, e.g., under shear, a shear banding structure has been observed
by one of us [220]. Theoretical studies on the latter phenomenon have been already
performed [221–223].
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5.3 FENE-B Semiflexible Chains

Polymerized actin (F-actin) plays an essential role in cell mechanics and cell mo-
bility, and is an attractive model for studying the fundamental physical proper-
ties of semiflexible polymers. Monomeric actin (G-actin, relative molecular mass
Mr = 42,000) polymerizes in physiological salt solutions (pH 7.5, 2 mM MgCL2,
150 mM KCl) to double-stranded filaments (F-actin). The F-actin solutions usually
exhibit a polydisperse length distribution of 4–70 µm with a mean length of 22 µm.
F-actin filaments have been extensively studied by Sackmann et al. Details about
its physics and biological function can be obtained from [224, 225], its role as
model polymer for semiflexible chains in dilute, semidilute, liquid crystalline solu-
tions [226] and also gels [227] has been recently discussed. Bio-molecular dynamics
simulations have been also reviewed by Berendsen [228].

Our goal is to demonstrate, that the simple FENE-B model defined through its
intramolecular bending (5.32) and FENE (2.1) potential (with RC = R0 in order to
prevent chain breaking) plus the WCA potential for interactions between all beads
allows for a rather efficient study of semiflexible model actin filaments at arbitrary
concentrations and subjected to external fields on a coarse-grained level, i.e. in par-
ticular simple compared with dynamic rigid-rod models and atomistic MD. This is
so since it is impossible to keep constraints exactly within a numerical approach, and
approximative methods are ‘expensive’. Moreover, even actin filaments are stretch-
able, and conformations of FENE chains share a fractal dimension d f = 1 with non-
stretchable (line) models. Gaussian chains and random walk conformation, in the
opposite, are inappropriate models for actin since they belong to a class of fractal
dimension d f = 2.

If the model is restricted to the formation of linear molecules, the model serves
to study linear actin filaments, if this restriction is released, we are going to model
semiflexible networks. Notice also similarities with the case of flexible (linear and
branched) micelles, for which FENE-C and FENE-CB models are used in the study
of linear and branched micelles, respectively. For reviews discussing the relevant
aspects in the formation of flexible and stiff networks and their mechanical properties
we refer to [226, 229–231]. Semiflexible block copolymers have been studied for a
FENE model in [232].

5.3.1 Actin Filaments

Actin filaments can be regarded as classical wormlike chains which are shorter or
comparable in length with their persistence length. Further to Sect. 5.1 we mention
the result for the radial distribution function C(RRR;L) of the end-to-end vector [31,
185, 233] in the extreme limit of relatively stiff filaments:

C(RRR;L) ≈ �p(AL2)−1 f (�p{1−‖RRR‖/L}/L) , (5.28)

with
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Fig. 5.8. Transient contours of a single FENE-B actin filament with 100 beads embedded in a
semidilute solution

f (x) =

⎧
⎪⎨

⎪⎩

π
2 e−π2x, x > 0.2

x−1−2

8(πx)
3
2

e−1/4x], x ≤ 0.2
(5.29)

and a normalization factor A close to 1 according to [185]. The result is valid for
L ≤ 2�p,x ≤ 0.5 and (space dimension) d = 3.

For actin filaments, concentration c is usually given in units of mass per volume,
whereas theoretical and simulation studies prefer to deal with concentrations c̃ in
units of length per volume. The relevant regime is c ≈ 1mg/ml. Since for the weight
of actin one has 370×43kD/µm = 2.64×10−11 µg/µm, a solution with the desired
concentration c contains 3.8× 1010 µm/ml = 38µm/µm3, i.e., we are interested in
systems with c̃≈ 10−100µm/µm3. For simplicity, considering a cubic (equidistant)
lattice with lattice spacing ξl we have: ξl =

√
3/c̃ ≈

√
0.1 ≈ 0.3µm. A minimum

estimate for the length of a segment of the multibead FENE-B chain a should be ξl ≈
5a, and the segment (or bead number) concentration n to be used in the simulation of
FENE-B filaments is n = c̃/a≈ 5c̃/ξl = 5c̃3/2/

√
3. Concerning the system size, if we

need to study a realistic regime, where the length L of filaments is L ≈ 5µm, and the
box size is twice the contour length, the total number of beads is 40L3c̃3/2/

√
3. For

the desired concentration of about 1mg/ml, we arrive at a large number. The system
should contain 8×125×5×135 ≈ 7×105 beads. The situation is better – from the
viewpoint of number of particles – for a minimum (still revelevant) concentration of
0.1mg/ml, for which 20000 beads are sufficient.

Restrictions for the chain dynamics within an entangled polymer solution can be
demonstrated by comparing the transient contours of a free actin filament with the
ones of an actin filament embedded in semidilute solution. A decrease of the ampli-
tudes for the thermally excited undulations is measured for the embedded filament,
see Fig. 5.8 for an animation of our NEMD computer simulation result. The re-
stricted chain motion can be understood in terms of of the undulations of a filament
in a tube formed by the surrounding entangled filaments, and allows to determine
its local diameter by measuring the maximum flicker amplitudes: Let yi denote the
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local axes of the tube at the two ends (i = 1,2). The reptation diffusion coefficient
along the tube, D‖, according to [225], can be determined by evaluating the random
fingering motion of the chain ends. If the chain end positions (xi,yi), with respect
to a local coordinate system with y-axes parallel to the tube axes at the ends are
recorded at fixed time intervals 
t, D‖ is determined as the arithmetic mean of the
diffusion coefficients parallel to the tube at both ends according to D‖ = (A
t)−1

∑
Nsteps
i=2 (yi

1 − yi−1
1 )2 +(yi

2 − yi−1
2 )2, where A ≡ 4(Nsteps − 1), and Nsteps is the number

of steps. In [225], projections of the filament contour to a plane (x−y) were analyzed
from experiment.

In order to extract the corresponding reptation diffusion coefficient from the bead
trajectories of the FENE-B model, embedded in 3D space, one has to precise the
above definition, i.e., we hereby define the orientation of a tube on the basis of
the temporary end-to-end vector of the semiflexible chain: RRR(T ) ≡ T−1 ∫ T

0 [rrrN(t)−
rrr1(t)]dt, which depends on the chosen time interval T . Let nnnT denote the normalized
quantity nnnT ≡ RRR(T )/‖RRR(T )‖, then the diffusion coefficient of a single bead paral-

lel to ‘its’ tube is Dk
T ≡ (2T )−1

〈
(nnnT · [rrrk(T )− rrrk(0)])2

〉
, where 〈...〉 represents a

time average. The reptation diffusion coefficient along the tube of the polymer with
N beads is then expressed as D‖ ≡ (D1

T + DN
T )/2. For rods the expected result is

D‖ = kBT ln(L/b)/(2πηsL), where L is the contour length, b the diameter of the
filament, kB is Boltzmann constant, T is the temperature and ηs is the viscosity of
the solvent. In addition, we need to have a formula to extract the orientation dif-
fusion coefficient Dor. and a tube width a, based on the time evolution of the end
bead coordinates of the semiflexible chain. The concept has physical meaning for
semiflexible or stiff chains, but is obviously meaningless for ideal chains. Now, let
rrr1(t) and rrrN(t) denote the coordinates of the end beads of a representative chain,
separated by RRR ≡ rrrN(t)− rrr1(t). The natural choice for a definition of the orienta-
tional diffusion coefficient is Dor(T ) ≡ (4T )−1(nnnT −nnn0)2, to be extracted in a range
where Dor � 1/T . In this range, Dor(T ) should be independent of T . For rods the
theoretical result is Dor = 3kBT (ln(L/b)− γ)/(πηsL3), where γ ≈ 0.8, but slightly
dependent on L/b [216]. Finally, based on the trajectories of all the three beads we
estimate a perpendicular diffusion coefficient as follows

D⊥(T ) ≡ 1
2T

∫ T

0

(
RRR(T )
‖RRR(T )‖ × drrrC(t)

dt

)2

dt . (5.30)

For rods, the theoretical result is D⊥ = D‖/2, and the so called ‘disentanglement
time’ can be related to D‖ through τd = L2/D‖, a ‘tube radius’ a can be defined
by a2 ≡ L2Dorτd = L4Dor/D‖, and the center of mass diffusion is obtained via
Dcm = (D‖ + 2D⊥)/3. Experimentally, thermal undulations of the filament (visi-
ble by microscopy) have been used to define the tube diameter; it is estimated as the
maximum deflection along the contour, at sufficiently large concentrations, within a
limited time interval.

Figures 5.9, 5.10 provide snapshots of FENE-B model actin filaments in equilib-
rium as well as in a nonequilibrium situation. Our preliminary results (which should
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φ=60%   κ=100 L=50 equilibrium

NEBD

Fig. 5.9. Equilibrium high density semiflexible FENE-B chains (5.33) for system parameters
given in the figure

φ=5%   κ=100 L=100 weak flow regime

NEBD

Fig. 5.10. Flow-aligned FENE-B chains for system parameters given in the figure
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Table 5.1. Preliminary simulation result for the scaling behavior of various diffusion coef-
ficients (see text part) for semidilute solutions of the FENE-B model actin filaments. The
scaling exponents have been estimated in the concentration regime (5-60%), relative bending
rigidities κ/L = 0.5−2

Dmon Dor D‖ D⊥

∝ c−α with α = 0.6(1) 0.7(2) 0.5(1) 0.6(1)
∝ κ−β with β = 0.3(1) 0.3(1) 0.3(1) 0.3(1)
∝ L−γ with γ = 0.5(4) 2.1(2) 0.5(5) 0.3(2)

be improved in the near future) for the reptation and orientational diffusion coef-
ficients defined in the previous section are summarized in Table 5.1. The effect of
concentration on the end-to-end distribution function of FENE-B actin filaments
is demonstrated by Fig. 5.11, for the diffusion coefficient D‖ vs chain length see
Fig. 5.12. A solutions of actin filaments exhibits pronounced shear thinning, non-
newtonian rheological behavior of the FENE-B model is reported in Fig. 5.13. The
simulation of dilute and semidilute solutions of actin filaments remains a challenge
for computer simulation due to the stiffness of filaments which requires large sam-
ples in order to prevent finite size effects.
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Fig. 5.11. Effect of concentration c on the end-to-end distribution function f (Ree) vs Ree/L
of FENE-B actin filaments (κ = 200, L = 100). For the curve with c = 0.5%, error bars are
shown

To give an impression for possible further applications of the presented FENE-
C and FENE-CB models, we end up this section with few snapshots. Figures 5.14,
5.15 show FENE-CB3 networks with different rigidities, whereas Fig. 5.16 has been
obtained for an extended version of the FENE-CB∞ model, for which the bending
potential (5.32) has been modified such that in-plance scissions between more than
three beads (at branching points) are prefered (see Table 14.1 conc. nomenclature).
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Fig. 5.12. Diffusion coefficient parallel to the tube vs chain length L for the FENE-B model
actin filaments at various concentrations
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Fig. 5.13. Viscosity coefficients and flow alignment angle vs shear rate for both, 2% and 5%
solutions of FENE-B actin filaments (κ = 100, L = 100)

The incorporation of f -branching into the FENE-C model, which carries a single
scission energy Esc (since f = 1 in its simplest form) generally introduces f inde-
pendent paramaters characterizing scissions and recombinations.

5.4 FENE-B Liquid Crystalline Polymers

Thermotropic liquid crystals form mesophases intermediate between a solid phase
at low temperatures and an isotropic liquid phase at high temperatures [234–236].
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Fig. 5.14. Sample snapshot of a realization of a system made of FENE-CB6 chains (5.32).
Beside scissions/recombinations of chains (parameterized through a scission energy Esc) the
model allows for the formation of branchings and carries a parameter for the (in plane) stiff-
ness of chains. The concentration is c = 5%. Results obtained via BD

Fig. 5.15. Same system as in Fig. 5.14 at concentration c = 20%. Results obtained via BD
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Fig. 5.16. Sample snapshot of a realization of a system made of semiflexible FENE-CB chains.
Beside scissions/recombinations of chains (parameterized through a scission energy Esc) the
model potential naturally allows for the formation of branchings and carries a parameter for
the stiffness of chains

Nematic liquid crystals possess an orientational order of the molecular axes but no
long range positional order. Smectic liquid crystals, in particular those referred to
as SmA and SmC have a nematic like orientational order and in addition their cen-
ters of mass are confined to layers. Previous computational studies on the phase
behavior of model liquid crystals by MD and Monte Carlo (MC) simulations have
been performed on various levels of simplification of the molecular interactions
[207, 237, 238]. Simulations of the Lebwohl-Lasher lattice model [239, 240] gave
hints on the basic features of the phase transitions. The simplest approach where
the dynamics of the centers of mass of the particles are properly taken into account
is to treat molecules as stiff non-spherical particles like ellipsoids or spherocylin-
ders, or to consider particles interacting by a Gay-Berne potential [241–243]. Going
further the internal configuration has been taken into account by treating the mole-
cules as being composed of interaction sites (monomers) connected by formulat-
ing constraints or binding forces. Both Monte Carlo [207, 244–247] and MD meth-
ods [248–250] were applied to study the static and dynamic properties, respectively.
Extremely huge compounds such as lipids in the liquid crystalline phase have been
simulated as well [251, 252]. The effect of semiflexibility and stiffness of macro-
molecules on the phase behavior of liquid crystals has been extensively discussed on
analytic grounds by T. Odijk and others [34, 253]. However from a physical point of
view the construction of model interactions remains in question [254,255], and from
the technical point of view, the development of efficient implementations [256–259]
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Fig. 5.17. The bead-bead interactions. In addition to the interactions indicated in this fig-
ure, there are also a FENE interaction between all connected beads in chains and a repulsive
Lennard–Jones between all beads of the system [33]

is challenging due the complexity of detailed models which involve long range elec-
trostatic forces or many body potentials.

This section reviews a simple microscopic model for a ‘representative’ ther-
motropic liquid crystals composed of partially stiff, partially flexible molecules. Our
system is composed of intramolecularly inhomogeneous FENE-B chains, interacting
via a Lennard–Jones potential, and the attractive part of the Lennard–Jones potential
is taken into account only between their stiff parts. This model has been introduced
in [33]. The model system is composed of nc multibead chains with N beads per
chain. Each chain, as shown in Fig. 5.17 is made of two identical terminal flexible
parts (Nflex beads) and a central stiff part (Nstiff beads) where Nstiff + 2×Nflex = N.
The notation (Nflex−Nstiff−Nflex) had been used to characterize the different sys-
tems. For example, (3−4−3) means that the chains in this system are composed of
a central stiff part of 4 beads and two terminal flexible parts of 3 beads. Simulations
are performed in the NVT ensemble. Results to be reported below were obtained
for a system of nc = 288 chains of length N = 10 at bead number density n = 0.8.
All beads are interacting with a WCA potential. Adjacent (connected) beads within
chains interact via a FENE force. The central part of each chain is kept stiff with a
strong (large κ) FENE-B interaction. Additionally, corresponding beads within the
stiff parts of different chains interact via the attractive part of the Lennard–Jones
potential (‘smectic’ biased) producing an effectively anisotropic interaction between
stiff parts. The strength of the attractive interaction is adjustable by a depth parameter
εatt.

5.4.1 Static Structure Factor

The static structure factor of the multibead fluid where each bead is assumed to act as
a ‘scatterer’ can be written as a product between inter- and intramolecular structure
factors S(kkk) = Ssc(kkk)Sinter(kkk). The single chain static structure factor representing
the intramolecular correlations is defined as:



70 5 Chain Models for Transient and Semiflexible Structures

Ssc(kkk) =
1

ncN

nc

∑
α=1

〈∣∣∣
∣∣

N

∑
j=1

exp
(

i kkk · xxx(α)
j

)
∣∣∣
∣∣

2〉

. (5.31)

Here xxx(α)
j denotes position of bead j within chain α , kkk the wave vector transfer,

and ncN the total number of beads. The static structure factor S(kkk) is restricted
to k = |kkk| = 2π p/Lb (p integer, Lb simulation box length). The single chain sta-
tic structure Ssc(kkk) is not subject to this restriction for k because it can be calcu-
lated from the unfolded chains, independent of the the size of the basic simula-
tion box. A long range positional is revealed by Bragg like peaks in another sta-
tic structure factor Scm(kkk) where the centers of mass of the molecules are taken as
scatterer. For ideal crystals the height of the Bragg peaks approaches nc, the num-
ber of molecules in the scattering volume. For a layered (smectic) structure with a
separaion distance d between layers a peak occurs at k = 2π/d. Its height divided
by nc provides a convenient measure for the degree of positional order σ , i.e., we

have σ ≡
∣∣∣
〈

n−1
c ∑nc

α=1 exp(2iπz(α)/d)
〉∣∣∣, where z(α) is a center of mass coordinate

of chain α with respect to a symmetry-adapted coordinate system, and 〈..〉 denotes a
time average.
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Fig. 5.18. Single chain static structure factor Ssc as projected onto the x-plane (kx = 0) at
different temperatures: T = 0.74 (a), T = 1.00 (b), T = 0.80 (c), and T = 1.40 (d) for the
3−4−3 system. Adapted from [33]
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For a number of these semiflexible systems it had been observed that a smec-
tic phase is well defined over a wide range of temperatures whereas the nematic
phase is too narrow in temperature to be seen clearly. The smectic phase becomes
increasingly disordered upon decreasing the strength of attraction (parameter εatt).
The effect of architecture (amount stiff/flexible) has been studied to a certain extend
in [33]. According to Table 5.2 clearing temperatures as well as melting temperatures
increase for this model upon increasing the length of the stiff part. This in qualitative
agreement with experiments. Some snapshots and results for order parameters are
given in Figs. 5.19–5.20.

Table 5.2. Influence of the ratio between stiff and overall length of the special FENE-B mole-
cules on their melting and clearing temperatures [33]

nflex−nstiff−nflex 3−4−3 3−5−3 0−10−0

(nstiff −1)/nb 0.34 0.40 1.00
melting Temperature 0.75 0.90 3.0
clearing Temperature 1.2 2.0 >5.0

S 2
,  

σ

Temperature
0.4 0.9 1.4 1.9

S2
Cooling

S2
Heating

σ
Heating

   

1.0

0.5

0

Fig. 5.19. Orientational order parameter S2 and positional order parameter σ at different tem-
peratures, for the 3−4−3 FENE-B system, observed in heating (from an ideal fcc structure)
and (subsequent) cooling [33]
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T = 0.50 T = 0.85 T = 0.90 T = 1.00 T = 1.10 T = 1.40

X XX XX X

Z ZZZ Z Z

Fig. 5.20. During heating: Snapshots of the stiff central parts of molecules at different temper-
atures T (increasing from left to right). for the 3−4−3 FENE-B system [33]
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Fig. 5.21. During cooling (comp. with Fig. 5.20): Snapshots of the stiff parts of the molecules
in two orthogonal projections) 3−4−3 FENE-B system [33]

To our best knowledge, the nematic phase has not been studied via computer
simulation for this model as long as flexible parts are present. Of course, for stiff
molecules [260], the nematic phase is pronounced in a broad temperature regime
in contradistinction to the smectic phase which appears in a small temperature in-
terval. An expected phase diagram for the system is shown in Fig. 5.23. A nematic
phase should be favored for longer chains with N � 10, and also for non-symmetric
molecules.

5.5 FENE-CB Transient Semiflexible Networks, Ring Formation

Both the anxalytic and numerical tools for linear wormlike micelles reviewed in the
foregoing sections can be used to predict the extent of loop formation as function of
the micellar concentration, the end-cap energy and the flexibility of linear micelles.
As a matter of fact, even if loop formation is unfavorable under many conditions,
e.g., for stiff micelles and low end-cap energies, they have to be treated correctly
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Fig. 5.22. The order parameters S2 (nematic) and σ (smectic) as function of εatt at the temper-
ature T = 0.8 for the 3−4−3 FENE-B system [33]
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Fig. 5.23. Typical experimental phase diagram where L is length of the chains and T denotes
temperature [261]



74 5 Chain Models for Transient and Semiflexible Structures

in any statistical approach to their behavior, since their presence can significantly
affect the relaxation time spectrum, the rheological behavior and correlation func-
tion of various types. Analytic considerations on the statistics of ring formation are
available in [262]. We recall that the FENE-C (or FENE-C2) potential acts between
all pairs of beads (whose spatial distance is below a certain threshold value QC) as
long as both beads have only one or two interacting neighbors. Such a transient bond
between connected beads defines the chain itself as well as its contour and it breaks
if any bond length exceeds the threshold value. In order to also account for stiffness
(which disfavors, or better, prevents ring formation) the FENE-B (classical semiflex-
ible linear polymers) and FENE-CB model (incl. scission and recombination) are
introduced as follows:

UFENE−CB(r,ϑ) = UFENE−C(r)+UB(ϑ) (5.32)

UB(ϑ) = κ(1− cosϑ) , (5.33)

where κ is the bending coefficient and ϑ is the angle between connected bonds, such
that ϑ = 0 for a stretched chain. Note, that the bending potential is a three-body
potential, whereas the FENE potential is a two-body potential, and the notation in
(5.32) is a formal one. According to Table 14.1 the FENE-Bn model is the natural
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Fig. 5.24. The average weight size for linear FENE-CB chains vs concentration for different
bending coefficients κ . Results obtained via BD
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Fig. 5.25. Probability to find a bead inside a loop for different bending coefficients κ and
concentrations c. Model system as for Fig. 5.24

extension of the FENE-B allowing for maximum functionality n (classical saturated
and unsaturated networks for small and large bending stiffness, respectively).

The FENE-CB and FENE-B models have not yet been characterized in an ex-
haustive fashion. Flexible FENE-n networks also known as ‘finitely extensible net-
work strand (FENS)’ [263] models have been used to investigate strain hardening
behavior for associating polymeric systems in [264], overshoot in the shear stress
growth function and strand extensibility in [265]. Remarkable progress has been
made in the understanding of polymer gels [266] where ‘equilibrium’ properties of
a FENE-C type network model were studied in detail via MC. The authors artifi-
cially prohibit asssociation of direct neighbors but it seems that agreement between
experiments and FENE model predictions can be further improved by taking bend-
ing stiffness into account (FENE-CB). At the same this article provides an excellent
review on continuum and molecular theories of stress-strain relations for networks
(incl. classicial network theory, nonaffine deformation theory, scaling model, rod
and coil model). To get a feeling on the power of FENE-CB network models and
their range of application we present a tiny result obtained in a preliminary study.
The model exhibits characteristic behaviors as those shown in Figs. 5.24, 5.25 when
solving the FENE-CB model via BD. With increasing concentration the probability
of loop formation decreases resulting from the increase of average length of micelles.
With increasing scission energy loop formation becomes favorable, but increasing
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Fig. 5.26. Snapshot of a BD computer simulation configuration of FENE-C wormlike micelles
with parameters c = 0.02, κ = 5 and E2 = 4. Here, a small system size, containing 1000 beads,
was chosen for reasons of clarity

stiffness decreases the tendency of ring formation. At large concentrations and large
values for the bending stiffness parameter κ there are deviations from the square
root behavior 〈n〉# ∝

√
c which are expected when a mean-field approach is used to

describe the effect of concentration. A snapshot is given in Fig. 5.26.
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Primitive Path Models

Having discussed the range of applicability for various FENE chain models
mostly listed in the upper part of Table 14.1 one may expect that we also review
the FENE models in the lower part of this table. Forttunately, several reviews exist
summarizing the constitutive equations following from the approximations involved
in the FENE-P.. and FENE-L. models, cf. [4, 35, 66] such there is no need to sum-
marize them – and there usefulness in micro-macro applications – here. Rather, we
turn to simple low dimensional models depicted in the upper part of Fig. 1.2, i.e.
tube models and elongated particle models for the dexcription of complex fluids.
One may ask how these levels of descriptions are related. This will be discussed in
Sect. 8.10.1.

6.1 Doi-Edwards Tube Model and Improvements

A molecular model for polymer melts was elaborated by Doi and Edwards (DE)
[216] who extended the reptation idea introduced by de Gennes [153] to a tube idea
in order to describe the viscoelastic behavior of entangled polymers in the presence
of ‘obstacles’. Within the tube and reptation pictures, the complex entanglement in-
teraction between polymer chains has been treated in a rather direct approach, i.e.
each chain in the polymer system is equivalent to a chain restricted to one dimen-
sional motion (so called ‘reptation’) in a confining tube, except for its two ends which
can move in any possible direction. In addition to the reptation mechanism, DE orig-
inally assumed instantaneous and complete chain retraction, affine tube deformation
by the flow, and independent alignment of tube segments. By doing so, they ob-
tained a closed-form constitutive equation which only involves the second moment
of the orientation vector for a tube segment. For highly entangled, linear polymers,

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 77–89 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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the original DE model has been extended to incorporate chain contour length fluctu-
ations [267, 268] and constraint release due to the motion of the surrounding chains
(so called ‘double reptation’) [269,270]. The combination of these two effects lead to
a refined description of the linear viscoelastic properties [271], however, the model
is much less successful for the nonlinear properties. The major experimental obser-
vations that the original DE theory fails to describe in the nonlinear regime are the
following [175, 272]: A) There exist irreversible effects in double-step strain exper-
iments with flow reversal, B) Over a wide range of shear rates γ̇ above the inverse
disentanglement time 1/τd the steady shear stress is nearly constant for very highly
entangled melts or solutions or increases slowly with shear rate for less highly entan-
gled ones. The first normal stress difference N1 increases more rapidly with shear rate
than does the shear stress over the same range of shear rates. The slope of N1 versus
γ̇ increases as the molecular weight decreases, C) The steady-state shear viscosity of
different molecular weights merge into a single curve in the high shear rate, power-
law regime, D) The shear stress shows transient overshoots in the start-up of steady
shear flow at low shear rates. The strain at which the maximum in the overshoot
occurs increases with shear rate at high rates, E) The first normal stress difference
exhibits transient overshoots in the start-up of steady shear flow at moderate shear
rates, F)The rate of stress relaxation following cessation of steady shear flow is shear
rate dependent, G) The steady-state extinction angle decreases more gradually with
shear rate than predicted by the DE model, H) The transient extinction angle shows
an undershoot at the start-up of steady shear at high shear rates; it also shows an im-
mediate undershoot when the shear rate is suddenly decreased after a steady state has
been reached, finally it reaches a higher steady-state value [273], I) Steady-state val-
ues of the dimensionless uniaxial extensional viscosity are non-monotonic functions
of extension rate.

In order to improve the situation, many attempts of modifying the original DE
model have been made during the last years and been reviewed in [5]. Several phys-
ical effects have been found to be important for more realistic modeling of nonlin-
ear properties of entangled polymers. Upon these the most important are avoiding
the independent alignment (IA) approximation, double reptation, chain stretching,
convective constraint release (CCR), and anisotropic tube cross sections. For a re-
view on these effects, their influence on the quality of predictions for rheological
quantities a good reference might be [175]. Recently, reptation models incorporat-
ing all the well established phenomena (except for anisotropic tube cross sections)
have been formulated based on a full-chain stochastic approach suitable for com-
puter simulations [148, 274–276]; on a full-chain, temporary network model with
sliplinks, chain-length fluctuations, chain connectiviy and chain stretching [277]; on
coupled integral-differential equations [278]; and a reptation model including aniso-
tropic tube cross sections, chain stretching, double reptation, and CCR, while avoid-
ing the IA approximation [175, 180]. The predicitive power of the Jacobi idenity
has been demonstrated for the latter model which is thermodynamiccaly admissible,
i.e., compatible with the GENERIC framework (Sect. 8.3). It is encouraging that
these reptation models can quite successfully reproduce the experimentally observed
rheological behavior in a large number of flow situations. Very recently, Doi merged
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together the network model of Green & Tobolsky, and the tube model of Edwards and
de Gennes. The resulting model, called the dual slip-link model, can be handled by
computer simulation, and it can predict the linear and nonlinear rheological behav-
iours of linear and star polymers with arbitrary molecular weight distribution [279].
Unified stress-strain models for polymers, including polymer networks have been
presented by Wagner [280, 281]. Rather than going into further detail with these
models for polymer melts, and in order to go into detail with any of the established
models, we take an illustrative example from our own research, where the original
tube model is subject to a very minor modification. This will allow us to discuss an
analytic expression for the dynamic viscosities, a decoupling approximation used to
evaluate nonlinear elastic behaviors, and Galerkin’s method to solve the underlying
Fokker–Planck equation efficiently.

6.2 Refined Tube Model
with Anisotropic Flow-Induced Tube Renewal

Point of departure are classical kinetic equations for the orientational distribution
function of polymer segments in melts. In the DE tube model the macromolecules
of a polymeric liquid are idealized as freely jointed primitive paths characterized by
the orientation of a segment uuu at contour label s (we use 0≤ s≤ 1). The orientation of
the segment at the ‘position’ s is determined by the orientational distribution function
f = f (t,s,uuu) which, in general, also depends on the time. The kinetic equation for
f = f (t,s,uuu) is written as

∂ f
∂ t

= −ωωω · LLLL f −LLLL· (TTT flow f )+Drep( f )+Dor( f ) ,

TTT flow ≡ 1
2

BLLLL(uuu[2] : γγγ) , (6.1)

with angular operator LLLL ≡ uuu× ∂/∂uuu, cf. Chap.10, vorticity ωωω ≡ (∇∇∇× vvv)/2 asso-
ciated with the (macroscopic) flow field vvv, γγγ ≡ (κκκ + κκκ†)/2 with κκκ ≡ (∇vvv)†, and
TTT flow is the orienting torque exerted by the flow. The kinetic equation of Peter-
lin and Stuart [282] for solutions of rod-like particles (where the variable s is not
needed) is of the form (6.1) with Dor( f ) ≡ wL2 f , where w stands for the orien-
tational diffusion coefficient. Often the corresponding relaxation time τ ≡ (6w)−1

is used to discuss results. The (reptation) diffusion term of DE can be written as
Drep ≡ λ−1∂ 2/∂ s2 f , with a relaxation time λ = L2/D, which is connected with a
disentanglement time via τd = λπ−2. The D-terms describe the ‘damping’, which

guarantees that f approaches the isotropic distribution f0 = (4π)−1 in the absence
of orienting torques. With an additional torque caused by a mean field taken into
account in (6.1), such a kinetic equation will be applied below to the flow alignment
of liquid crystals [74]. Here we consider both diffusion mechanisms. For the case
of rodlike segments (B = 1) the Fokker–Planck equation (6.1) is equivalent with the
diffusion equation in [4, 283].
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With the normalization
∫

f d2uuu = 1 for the orientational distribution function
f = f (t,s,uuu) (time t) the average 〈ψ〉 of a function Ψ = Ψ(uuu) is given 〈Ψ〉 =∫
Ψ f d2uuu and depends on t and s. Here, the (2nd rank) alignment tensor (4.8)

aaa[2] = aaa(t,s) = 〈 uuuuuu 〉 =
〈
uuu[2]

〉
is once more of particular importance. The symbol

.. denotes the symmetric traceless part of a tensor, and 111 is the unit tensor. Con-
sidering a planar Couette flow in x−direction, gradient in y-direction, the shear rate
γ̇ for the macroscopic velocity profile vvv is γ̇ ≡ ∂vx/∂y. For this geometry, only 3 of
the 5 independent components of the alignment tensor do not vanish. In the spirit of
Sect. 2.1 we abbreviate – for the present purpose – as follows:

a+ ≡
〈
uxuy

〉
,

a− ≡ 1
2

〈
u2

x −u2
y

〉
,

a0 ≡ 3
4

〈
u2

z −
1
3

〉
,

ãaa ≡ (a+,a−,a0)T . (6.2)

A viscous flow gives rise to a flow alignment [282, 284] which can be de-
tected optically via its ensuing birefringence. The alignment, in turn, affects the
viscous flow [284, 285] and consequently the stress tensor σσσ contains a contri-
bution associated with the alignment, more specifically, σσσ = 2ηisoγγγ + σσσa, and
σσσa = 3npkBT R

∫ 1
0 aaa(t,s)ds, where ηiso is the ‘isotropic’ viscosity for aaa = ãaa = 0.

np and T are the molecule number density and the temperature of the liquid. The
relation between σσσa and aaa[2] (SOR, discussed in Sect. 4.6) which has been derived
by Giesekus [285] and used by DE is a limiting expression for long and thin seg-
ments corresponding to B = 1. In general the factor B is the ratio of two transport
coefficients [74,284]. Curtiss and Bird [4] replaced 3B by 1 and presented additional
viscous contributions associated with the ‘link tension’. These terms are disregarded
here.

6.2.1 Linear Viscoelasticity of Melts and Concentrated Solutions

Multiplication of (6.1) with uuuuuu and integration over the unit sphere yields

(
∂
∂ t

+ τ−1 −λ−1 ∂ 2

∂ s2

)
aaa[2] =

2
5

Bγγγ + · · · , (6.3)

with τ = (6w)−1. The dots stand for terms involving products of aaa[2] with the vortic-
ity ωωω and γγγ , as well a term which couples aaa[2] with an alignment tensors of rank 4.
These terms can be inferred from [74], they are of importance for the non-newtonian
viscosity and the normal pressure differences (see next section). For an analysis of
the frequency dependence of the viscosity in the Newtonian regime, these terms can
be disregarded, i.e. we consider the only nonvanishing component a+ of aaa[2].
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The complex viscosity η∗ = η ′ − iη ′′ of a viscoelastic medium can be deter-
mined by measurements under oscillatory shear flow (or deformation) γγγ ∼ e−iωt .
The relaxation of the material causes a phase-shift δ between (complex) stress
and deformation which is related to the complex viscosity (tanδ ≡ η ′/η ′′), or al-
ternatively, to the storage G′ and loss modulus G′′ via G∗ = G′ + iG′′ ≡ iωη∗.
With the ansatz a+ = 2BγγγC/5 the scalar function C(ω,s) with dimension of time
obeys (τ−1 − iω)C−λ−1(∂ 2/∂ s2)C = 1. The boundary condition proposed by DE
are random orientations for the chain ends, ∀t f (s = 0,uuu) = const. This implies
∀ωC(ω,s = 0) = 0. We wish to take into account the property of chain ends to partic-
ipate in the flow alignment of the complete chain, or equivalently, anisotropic (flow-
induced) tube-renewal. Working out this modification, we set C(ω,s = 0) = τend, in
order to introduce an additional relaxation time τend for this process. The solution
reads

C(ω,s) = λ
[

1
z2 +

(
1
z2 −g

)(
tanh(z/2)
sinh−1(sz)

− cosh(sz)
)]

, z ≡
√

τ−1λ − iωλ ,

(6.4)
with g ≡ τendλ−1 being a dimensionless ‘order’ parameter for the chain ends. From
the above relations alone we immediately obtain an analytic expression for the com-
plex viscosity:

η∗(ω) = Gaλ
[

1
z2 +

(
g− 1

z2

)(
2tanh( z

2 )
z

)]
, (6.5)

with a shear modulus Ga = 3B2npkBT/5. A Maxwell model type expression is ob-
tained if τ � λ . For polymer melts and highly concentrated solutions where the
reorientational motion is strongly hindered, one expects the opposite situation, viz.
τ � λ . The pure reptation model considered by DE corresponds to τ−1λ → 0
and consequently z → y with y ≡ (−iωλ )1/2 = (1 − i)Ω 1/2, and Ω ≡ ωλ/2. In
this case (6.5) reduces to η∗(ω) = ηDE[H∗

DE(ω) + H∗
end(ω)] with the DE viscos-

ity ηDE = Gaλ/12 = npkBT λ/20, and dimensionless (complex) damping functions
H∗

DE = 12y−2{1− 2y−1 tanh(y/2)}, and H∗
end = g24y−1 tanh(y/2). The index ‘end’

labels a term, which vanishes for g = 0 and represents the influence of anisotropic
tube renewal on the frequency behavior of the viscosity.

A more convenient expression for the dynamic viscosities G′ and G′′ in the DE
limit λ � τ is immediately obtained from (6.5) and reads:

G′

Ga
=

1
C
{C− sin(A)−Bsin(A)+(B−1)sinh(A)} , (6.6)

G′′

Ga
=

1
C
{(B−1)sin(A)+(B+1)sinh(A)} , (6.7)

with

A ≡ (λω)1/2

B ≡ 2gA2 ,

C ≡ A(cos(A)+ cosh(A)) . (6.8)
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Some of deficiencies of the DE model (now recovered from (6.8)) with B = 0) have
been overcome by inclusion of anisotropic chain ends. By NEMD simulation of a
FENE melt in [283] we found strong support for implementing this modification.
Moreover, the expected scalings τend ∝ ηRouse ∝ L and λ ∝ ηDE ∝ L3.4 and therefore
g ∼ L−2.4 (L is proportional to the molecular weight) allow to predict – in good
agreement with experiments – the effect of chain length on the dynamics viscosities,
and in particular on the width of the plateau regime.

In distinction to the DE theory (g = 0), for high frequencies the presented mod-
ification predicts one region, where both moduli display the same characteristics,
independent of g, and another (plateau) region, where the storage modulus is nearly
constant within a g-dependent frequency range. For a plot of the dynamic viscosi-
ties see Fig. 6.1. Notice that the moduli tend to overlap with increasing values for
the shear frequency. The positive slope of G′ and G′′ at high frequencies ω follows
here without the recourse to ‘glassy relaxation modes’, as suggested by Ferry [164].
To complete the discussion we mention the explicit result for the shear relaxation
modulus G(t) ≡

∫ ∞
0 η ′(ω)cos(ωt)dω . We obtain

G(t) = 8Ga ∑
α,odd

((πα)−2 +g)e−t/λα , (6.9)

with λα = λ/(πα)2 = τdα−2, thus reducing to the DE result for vanishing g. For
short chains, i.e., large g one obtains an expression GR(t) – by the way quite similar
to the one of the Rouse model – which satisfies GR(t) = −gλτ−1dG/dt.

/10

Fig. 6.1. Shear moduli G′ and G′′ vs frequency ω for various values of the parameter g for
anisotropic tube renewal. Adapted from [283]
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ln ω (s  )-1

ln G''

ln G'

( dynes/cm   )2

Fig. 6.2. Comparison between theory and experiment for the loss and storage moduli, (6.5).
Experiments (symbols) are for on a monodisperse polysterene melt (Mw = 215000) [286].
The moduli are functions of shear rate reduced to a reference temperature of T red. = 160◦C
by a factor aT . The two upper solid lines (for G′ and G′′) pertain to the theoretical parameters
Ga = 1.7 ∗ 106 dynes cm−2, λ = 260s and τend = gλ = 1s. The theoretical curves for g = 0
corresponding to the results of Doi and Edwards [216], Curtiss and Bird [4], de Gennes [202]
are also shown. The calculation of Doi [267] takes into account fluctuations in the length of
the ‘primitive chain’. Adapted from [283]
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Fig. 6.3. Comparison between theory (6.5) and experiment (symbols) for the loss and storage
moduli vs frequency for polysterene of molecular weight 267,000 dissolved in chlorinated
diphenyl at the concentrations c shown (in g/cm3) [17, 287]
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6.3 Nonlinear Viscoelasticity, Particular Closure

Multiplication of (6.1) with uuuuuu and subsequent integration over the unit sphere,
considering further the equation of change for the fourth rank alignment tensor and
neglecting the anisotropic alignment tensor of rank 6, which is equivalent to a specific
‘decoupling approximation’, cf. Sect. 11.3, a closed equation of change is obtained,

(
∂
∂ t

+ τ−1 −λ−1 ∂ 2

∂ s2

)
aaa[2] =

2
5

Bγγγ +
6B
7

γγγ ·aaa[2] +2 ωωω ×aaa[2] , (6.10)

where ωωω ×aaa[2] i j
is the generalized cross product defined in (10.18). In terms of the

components ãaa of the alignment tensor (defined in (6.2)) we can rewrite (6.10) for
stationary of time-dependent simple shear flow as

D

⎛

⎝
a+
a−
a0

⎞

⎠

︸ ︷︷ ︸
≡ ãaa

=

⎛

⎝
ς Γ ϒ

−Γ ς 0
Ξ 0 ς

⎞

⎠

︸ ︷︷ ︸
≡ MMM

·ãaa+

⎛

⎝
−Θ

0
0

⎞

⎠

︸ ︷︷ ︸
≡ΘΘΘ

, with

⎛

⎝
ϒ
Ξ
Θ

⎞

⎠≡ BΓ

⎛

⎝
2/7

3/14
1/5

⎞

⎠ , (6.11)

i.e., Dãaa = MMM · ãaa+ΘΘΘ with the differential operator D, a matrix MMM and inhomogeneity
(vector) ΘΘΘ , dimensionless shear rate Γ = γ̇λ , ratio between reptation and orienta-
tional relaxation times ς = λ/τ = π2τd/τ and dimensionless coefficients ϒ ,Ξ ,Θ
defined in (6.11). The solution is ãaa as function of s, t, and γ̇(t). Usually the rheolog-
ical quantities can be expressed in terms of the integral

∫
ãaa(s, t)ds. An example will

be given below. A weighted average had been considered in [4].

6.3.1 Example: Refined Tube Model, Stationary Shear Flow

For the refined tube model (with anisotrpoiv tube renewal, both reptation and orien-
tational damping, closure approximation, (6.10)) we need to solve the corresponding
matrix equation with D = ∂ 2/∂ s2. The analytic solution for ãaa(σ) can be immediatly
written down. The result is determined by the real part kR = {(

√
∆ + ς2 − ς)/2}1/2

and imaginary part kI =
√

∆/(2kR) of a complex wave vector. For the mean alignment
(vector) ãaa ≡

∫ 1
0 ãaa(σ)dσ we obtain by performing a simple integration an explicit re-

sult for the alignment in terms of shear rate, reptation and orientational relaxation
times, shape factor B, and parameterized tube renewal:

⎛

⎝
a+
a−
a0

⎞

⎠ =
1

√
∆(∆ + ς2)

⎛

⎝

√
∆ ∩

√
∆ ∪

Γ ∪ −Γ ∩
−Ξ ∪ Ξ ∩

⎞

⎠·
(

kR kI

kI −kR

)
·
(

sin kR

2 cosh kI

2

cos kR

2 sinh kI

2

)

+
Θ

(∆ + ς2)

⎛

⎝
ς
Γ

−Ξ

⎞

⎠ . (6.12)
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where all symbols except ∩,∪,V,Λ being related to the parametric (tube renewal)
boundary conditions aend

± ≡ a±(s = 0) were introduced in terms of dimensionless
shear rate, shape factor B, and ratio ς just above. We have (∩,∪) ≡ (coskR +
coshkI)−1 ((Λ ,−V ),(V,Λ)) · (cos kR

2 cosh kI

2 ,sin kR

2 sinh kI

2 ). with Λ ≡ aend
+ − ςΘ/

(∆ + ς2) and V ≡ Γ −1
√

∆(aend
− −ΓΘ/(∆ + ς2)). Assuming the SOR, the non-

newtonian shear viscosity η is obtained from ãaa through η = 2C−1γ̇−1a+ with a
stress-optic coefficient C discussed earlier. The same applies to the normal stress
differences (captured by a−,a0).

6.3.2 Example: Transient Viscosities for Rigid Polymers

For this example we evaluate (6.10) without reptation (λ−1 = 0) and the differential
operator is identified to be D=−λ∂/∂ t (just formally, λ drops out in the result). The
analytic solution for the time-dependent alignment vector reads ãaa(t) = BBB · [ãaa(t0)+
ccc]−ccc with BBB = exp{−MMM(t − t0)/λ} and ccc = MMM−1 ·ΘΘΘ . The solution can be rewritten
in terms of the eigensystem of MMM. For a case of isotropic rods, B = 1 at time t0 = 0,
the time evolution of ãaa(t) is plotted in Fig. 6.4.
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Case B) Rigid rods (shear rate λγ  =1)

τ = 0

Fig. 6.4. A particular case of the presented analytical solution of (6.10) for the alignment
tensor components a±(t) of initial isotropically distributed rigid rods subjected to shear

6.3.3 Example: Doi-Edwards Model as a Special Case

We should notice, that the analytic solution (6.12) for isotropic chain ends (aend
± = 0)

and without orientational damping (τ−1 = 0) provides an analytical approximation
for the numerical result of the DE model [58, 216]. Using (6.12) we arrive – for
steady shear – at

a+ =
1

10
γ̇λ B

(
sinhx− sinx
coshx+ cosx

)
x−3, x ≡ 1√

2
(γ̇λ )

1
2

(
1− 3

49
B2
) 1

4

, (6.13)
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As can be seen from this expression, for low shear rates the shear alignment a+
increases linearly with shear rate γ̇ , for high rates a+ ∼ γ̇−1/2 in agreement with
[216]. Using the SOR, η ∼ a+γ̇−1 is the shear viscosity, andΨ1 ∼−2a−γ̇−2 andΨ2 ∼
(2a0 + a−)γ̇−2 are the viscometric functions [4]. In the DE limit our approximate
model yields Ψ2 =Ψ1 limγ̇→0Ψ2/Ψ1 and limγ̇→0Ψ2/Ψ1 = 3B/14−1/2, showing that
Ψ1 and Ψ2 possess the same characteristic dependence on shear rate. The original
DE model considers rod-like segments, i.e. B = 1, for which recover the expected
and famous result Ψ2/Ψ1 = −2/7. If both the orientational diffusion constant and
anisotropic tube renewal are taken into account, different power laws appear which
can be used to classify the systems rheological behavior [4, 216, 283]. A consistent
procedure is still missing to calculate the tube renewal parameter aend

± . Figure 6.5
suggests aend

± /acenter
± ∝ γ̇ .

log  γ

a
+/-

 / a
+/-

 
end center−

−
−
−
−
−
−
−
−
−

NEMD computer 
simulation result

+

-
 

 

no alignment of
 chain ends

Fig. 6.5. A stationary, planar Couette flow with shear rate γ̇ has been applied to a FENE model
polymer melt via NEMD. The finite alignment of the end segments of polymer chains relative
to the alignment of the centers of chains is shown for two components of the alignment tensor.
Note that for a+ (being closely related to the shear viscosity) the alignment of the chain ends
is more pronounced than the alignment of the centers of chains at sufficiently high shear rates.
The effect on the rheological quantities is important, and quantified in this paragraph

6.4 Nonlinear Viscoelasticity without Closure

For the three examples just discussed we started from a closed, approximate equa-
tion of change for the second rank alignment tensor, (6.10). We want to shortly
summarize on how the underlying Fokker–Planck equation (6.1) incl. the effect of
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anisotropic tube renewal had been solved to within given precision in [288] using
Galerkin’s principle [4]. The same methodology had been recently used in [289] to
improve on an efficient realization of the micro-macro CONNFFESSIT [290] ap-
proach for the case where a low-dimensional Fokker–Planck equation carrying the
recommended ingredients (double reptation, convective constraint release etc., cf.
Sect. 6.1) is available. There are several alternative strategies. One of them is BD
which we already used in the first chapters (see also Sect. 8.5), and which should be
the prefered method for solving non-trivial high dimensional Fokker–Planck equa-
tions [58].

6.4.1 Galerkin’s Principle

Galerkin’s principle The idea is to solve the Fokker–Planck equation (6.1) by ex-
panding f (uuu,σ) in spherical harmonics ψ and even Euler polynomials E [291]

f (M,I)(uuu,σ) =
1

∑
k=0

M

∑
n=0

n

∑
m=0

I

∑
i=0

Ai
knmψm

kn(uuu)E2i(σ) , (6.14)

with ψm
0n = Pm

n (cosθ)cosφ , ψm
1n = Pm

n (sinθ)sinφ . Inserting the series f (M,I) into
(6.1) and applying Galerkin’s principle

∫
dφ

∫
dθ

∫
dσ D̂[ f (M,I)]ψ p

lqE j sinθ = 0, for
l = 0..1, q = 0..M, p = 0..q, j = 0..I leads to coupled linear equations for the coeffi-
cients Ai

knm as function of the dimensionless ratio ς = λ/(6τ) and the dimensionless
shear rate Γ = γ̇τ . These equations were derived in [288]. A finite bending of f at
the chain ends (anisotropic tube renewal) is captured through a coefficient

x ≡ ∂ 2/∂σ2
∫

f (uuu,σ)d2uuu |σ=0,σ=1= A2
000 , (6.15)

while we allow the integral
∫

f (uuu,σ)d2uuu to depend on σ . The normalization for f
reads ∑I

i=0 Ai
000 NE(i,0)= 1, with NE(i, f )≡

∫ 1
0 dσEiE f = αi f ((i+ f +2)!)−1Bi+ f +2,

involving the Bernoulli numbers B [291] and αi f ≡ 4(−1)i(2i+ f +2−1)i! f !. The co-
efficients ∀n,iAi

10n are left undetermined in the ansatz (6.14). Finally there is an equal
number of (M/2+1)2(I/2+1) nontrivial equations and unknowns to solve for given
parameters Γ , ς and x.

The rheological behavior is infered from the moments (or weighted moments,
cf. the parameter ε used by Bird et al. [4] for additional ‘viscous’ contributions) of
f , and had been also discussed in [288]. The effect of ratio of relaxation times ς
on the alignment tensor components a± (for a fixed value for x), together with the
corrresponding components of the viscous contribution proposed by Bird et al. [4]
and denoted as k± are shown in Fig. 6.6. A plateau (undershoot) in a+ appears with
decreasing ς , and k± dominates at very high rates. The latter term can bbe actually
used to predict a wide range of power law behaviors for the shear viscosity vs rate by
varying ς . The influence of the finite bending of f at the chain ends, i.e. x 	= 0, on the
alignment of segments is shown in Fig. 6.7. Perhaps surprising is the result for the
dependence of a+ on the contour position. At vanishing shear rates the components
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a± of the symmetric traceless 2nd rank alignment tensor vanish. At high rates the
component a+ at the ends is larger than a+ at the chain’s center, while the component
a− monotoneously increases with rate – for all contour positions. The centers of the
chains are more aligned in direction of flow (characterized by a−) than the outer
parts. Since the a+-component must rise and fall with shear rate and has a maximum
at a certain characteristic shear rate, the chain end will follow this behavior - just
shifted to larger rates. These predictions are in very good agreement with results from
NEMD of polymer melts described in Chaps.4, 6 and also illustrate why the effect
of anisotropic tube renewal has an important effect on the shear viscosity (which is
connected with a+ but not with a−).





7

Elongated Particle Models

In [292] we provided a statistical interpretation of the director theory of Ericksen
and Leslie (EL) [293–295] for nematic liquid crystals. Starting from a Fokker–Planck
equation of the type (6.1) supplemented by a mean-field plus external potential, and
using an expression for the stress tensor derived for structural theories of suspen-
sions, we interpreted the EL viscosity coefficients and molecular fields in terms of
the parameters characterizing a suspension, i.e., particle geometry, particle concen-
tration, degree of alignment, solvent viscosity, and the potential. It turned out that the
theory of Kuzuu and Doi [73] for concentrated suspensions of rod-like polymers, the
affine transformation model by Hess and Baalss [296], the results by Hand [297] and
Sin-Doo Lee [298], were contained as special cases. In distinction to Kuzuu and Doi
in [292] we also obtained an expression for the tumbling parameter in terms of order
parameters and particle shape, which had been confirmed independently by Archer
and Larson [299]. Here, in order to review the highly coarse-grained models depicted
at the top of Fig. we summarize the macroscopic framework developed by EL.
We give an example on how the microscopic quantities such as an anistropic gyra-
tion tensor for polymeric chains, or the shape of suspended ellipsoidal (colloidal)
particles enter the anisotropic viscosities.

There are various approaches in the literature to modeling fluids with microstruc-
ture. For example, equations for suspensions of rigid particles have been calculated
by averaging the detailed motion of the individual particles in a Newtonian fluid. In
particular, the solution for the motion of a single ellipsoid of revolution in a steady
shear [49] can be used to determine the governing equations for the slow flow of a
dilute suspension of non-interacting particles. For more concentrated systems, var-
ious approximations to the particle motions have been used. This approach, based
upon a detailed analysis of the microstructure, has been called ‘structural’ by Hinch

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 91–110 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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and Leal (HL) [50]. Alternatively, ‘phenomenological’ continuum theories for an-
isotropic fluids have been postulated. They tend to be quite general, being based
upon a small number of assumptions about invariance, perhaps the most successful
and well known example being the EL director theory for uniaxial nematic liquid
crystals [293, 294], Additionally, numerous models have been developed and dis-
cussed in terms of symmetric second- and higher-order tensorial measures of the
alignment [216, 234, 235, 300–305].

Given these diverse methods of derivation and apparently diverse domains of
application, one may ask, however, if and how such diverse approaches may be in-
terrelated. Several comparisons have already been made. In particular, Hand [297]
obtained the governing equations for dilute suspensions of ellipsoids of revolution
without rotary diffusion and subject to no potential (thus perfectly aligned), showed
that they could be modeled also by the simpler EL director theory for transversely
isotropic fluids [306], and calculated the corresponding viscosities in terms of the
suspension parameters. Furthermore Marrucci [307], Semonov [308], and Kuzuu
and Doi [73] related the EL theory to a dynamical mean-field theory for concen-
trated suspensions of rigid rods and thereby calculated the Leslie and Miesowicz
viscosity coefficients in terms of the suspension parameters.

7.1 Director Theory

The traditional EL theory of anisotropic fluids [293, 309] assumes that there is a
unit vector field nnn(xxx, t) (called the director) representing the average alignment at
each point of the fluid. The extension [295] also introduces a variable degree of
alignment represented by the scalar field S(x, t), where −1/2 ≤ S ≤ 1. The extended
EL (also denoted by EL in the following) constitutive relation for the hydrodynamic
stress tensor σσσ of an incompressible anisotropic fluid with velocity vvv is given by the
following expression linear in the nonequilibrium variables Ṡ, γγγ , and NNN:

σσσ = (α1nnn(2) : γγγ +β1Ṡ)nnn(2) +α2 nnnNNN +α3 NNNnnn+α4 γγγ +α5 nnn(2) · γγγ +α6 γγγ ·nnn(2) , (7.1)

where nnn(2) ≡ nnnnnn, and
NNN ≡ ṅnn−ΩΩΩ ·nnn , (7.2)

γγγ ≡ (κκκ +κκκ†)/2 = γγγT , (7.3)

and
ΩΩΩ ≡ (κκκ −κκκ†)/2 = −ΩΩΩ T , (7.4)

with κκκ = (∇vvv)†. In addition to the usual balance of momentum, ρ v̇vv =−∇ p+∇ ·σσσT,
there are two additional equations governing the microstructure: i) a vector equation
for the director nnn (here we neglect director inertia)

000 = nnn× (hhhn − γ1NNN − γ2γγγ ·nnn) , (7.5)

or equivalently, 000 = (111−nnn(2)) ·(hhhn−γ1NNN−γ2γγγ ·nnn), where hhhn is the vector molecular
field (which is indeterminate to a scalar multiple of nnn); ii) a scalar equation for the
degree of alignment S (again neglecting inertia)
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0 = hS −β2 Ṡ−β3 nnn(2) : γγγ , (7.6)

where hS is the scalar molecular field.1 The αi are commonly called Leslie viscosity
coefficients. The βi were recently introduced in by Ericksen [295] for the case of
variable degree of alignment. Furthermore the coefficients γi are related to the αi

by γ1 = α3 −α2, γ2 = α6 −α5. There are also two restrictions (Onsager relations)
that follow from the existence of a dissipation potential: α2 +α3 = α6−α5 (Parodi’s
relation [234]), and β1 = β3 (proposed by Ericksen). Dissipation arguments lead to
the following restrictions on the coefficients [295]: α4 ≥ 0, γ1 ≥ 0, β2 ≥ 0, α1 +
3α4/2 + α5 + α6 −β 2

1 /β2 ≥ 0, 2α4 + α5 + α6 − γ2
2 /γ1 ≥ 0. Particular micro-based

realizations of the ‘macroscopic’ equations will be presented next.
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Fig. 7.1. Effect of particle shape on the relevance of the stress contributions for suspensions
of ellipsoids of revolution, (7.8)

7.2 Structural Theories of Suspensions

Consider a dilute suspension of neutrally buoyant, rigid ellipsoids of revolution dis-
persed in an incompressible Newtonian fluid at thermal equilibrium. The governing
equations can be determined from Jeffery’s [49] solution for the motion of a sin-
gle ellipsoid in a homogeneous shear flow. In terms of the notation of Brenner and
Condiff [310], we have for the dynamic stress tensor

1 In terms of a free energy F(S,∇S,nnn,∇nnn), the molecular fields are given by

hhhn = ∇ · ∂F
∂∇nnn

− ∂F
∂nnn

, hS = ∇ · ∂F
∂∇S

− ∂F
∂S

. (7.7)
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σσσ = 2µ0γγγ +5µ0φ 〈AAA〉− n
2

εεε · 〈LLL〉+O(φ 2) , (7.8)

where AAA is the stresslet and LLL is the applied couple on each particle. They are given
by

〈AAA〉 = C1γγγ +C2(γγγ ·aaa(2) +aaa(2) · γγγ)−C3γγγ : aaa(4)

+NDr

[〈
uuu

∂
∂uuu

U

〉
+
〈(

∂
∂uuu

U

)
uuu

〉]
,

〈LLL〉 = −
〈

uuu× ∂
∂uuu

V

〉
= −〈LV 〉 , (7.9)

with the ‘brownian potential’ U ≡ ln f + V/kBT , cf. Chap.11 and footnote on
Page 175, and angular operator L ≡ uuu× ∂/∂uuu. Here, µ0 is the Newtonian shear
viscosity of the solvent, φ is the volume fraction of ellipsoids, n is the number den-
sity of ellipsoids, uuu is a unit vector along the ellipsoid axis, f (uuu, t) is the orientation
distribution function, 〈·〉 is the orientational average, V is an arbitrary potential, Dr

is the rotary diffusion coefficient of a single ellipsoid, B ≡ (r2
p − 1)/(r2

p + 1) with
the axis ratio rp = a/b (length/width in the cross-section) of an uniaxial ellispoid, N
and C.. (plotted in Fig. 7.1) are geometric coefficients as function of particle shape,
cf. footnote2 The constitutive relation (7.8, 7.9) is derived assuming a homogeneous
shear flow. It can also be expected to apply for inhomogeneous flows [311]. There

2 Shape coefficients are defined by C1 ≡ 2Q1, C2 ≡ (2Q3 −BN), C3 ≡ (3Q2 +4Q3 −2BN).
with

B =
(r2

p −1)
(r2

p +1)
, (7.10)

N =
2(r2

p −1)2

5r2
p[2r2

pβ −β −1]
,

Q1 =
4(r2

p −1)2

5r2
p(3β +2r2

p −5)
,

Q2 =
2Q1

3

[

1−
2r2

p +1− (4r2
p −1)β

4(2r2
p +1)β −12

]

,

Q3 = Q1

[
[r2

p(β +1)−2](3β +2r2
p −5)

4[β (2r2
p −1)−1](r2

p +2−3r2
pβ )

−1

]

,

where rp ≡ a/b is the axis ratio of ellipsoid and

β =
cosh−1 rp

rp(r2
p −1)

1
2

(for rp > 1, i.e., prolate spheroids)

β =
cos−1 rp

rp(1− r2
p)

1
2

(for rp < 1, i.e., oblate spheroids)
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is also a convection-diffusion equation (of the Fokker–Planck type) for the orienta-
tion distribution function f , which allows for the calculation of the evolution of the
moments of the alignment, cf. Chap.11, i.e., (6.1)) with an orienting torque due to
external fields (flow plus potential)

TTT = TTT flow − Dr

kBT
LV . (7.11)

In equilibrium the orientation distribution function becomes the canonical distribu-
tion, cf. Chap.11. We will make use only of the equation for the rate of change of the
second-moment of the alignment aaa(2) ≡ 〈uu〉. It follows directly from the Fokker–
Planck equation:

∂
∂ t

aaa(2) = 2Bγγγ : aaa(4) +ΩΩΩ ·aaa(2) −aaa(2) ·ΩΩΩ +B(γγγ ·aaa(2) +aaa(2) · γγγ)

−Dr

[〈
uuu

∂
∂uuu

U +(
∂

∂uuu
U)uuu

〉]
. (7.12)

Furthermore, we have the following relations between the coefficients [310]:

BckBT = 10µ0φNDr, φ = nvp , (7.13)

where vp = 4πab2/3 is the volume of an ellipsoid. The correspondence between
micro- and macroscopic equations will be presented for a special case in Sect. 7.2.2.
A more general case had been discussed in [292].

7.2.1 Semi-Dilute Suspensions of Elongated Particles

Batchelor [312] has calculated the effect of hydrodynamic interaction of parallel
elongated particles (without brownian motion) in a pure steady straining motion
(ΩΩΩ = 000) on the bulk stress tensor. For elongated particles of length a on which no
external force or couple acts and taking up the same preferred orientation, Batchelor
gave the approximate relation for the stress tensor which can be compared immedi-
ately to those of the EL theory with α1 = 4π/(3V ) ∑(a/2)3/(lnh/R0), α4 = 2µ0,
α2,3,5,6 = 0, S = 1. where nnn is the direction of the particle axes, the sum is over
the particles in the volume V , R0 is the effective radius of the cross-section of the
particle, and h = (na)−1/2.

7.2.2 Concentrated Suspensions of Rod-Like Polymers

Doi [313] has presented a dynamical mean field theory for concentrated solutions
of rod-like polymers. We follow here the version by Kuzuu and Doi [73]. Viscous
contributions to the stress tensor are generally assumed negligible, but we include
the viscosity µ0 of the solvent. The stress tensor of this model formally equals ex-
pression (7.8) with C1 = C2 = C3 = 0 in (7.9). The potential is composed of two
contributions
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V = Vm +Ve, Ve = −1
2

χaHHHHHH : uuu[2], Vm = −3
2

UmkBT aaa[2] : uuu[2] , (7.14)

Ve denotes the contribution due to an induced dipole by an external field HHH, χa being
the anisotropic susceptibility of a rod, and Vm denotes the mean-field contribution,
Um being a constant reflecting the energy intensity of the mean field. A similar equa-
tion was also presented by Hess [314].

7.3 Uniaxial Fluids, Micro-Macro Correspondence

It is common to classify the types of alignment according to the eigenvalues of the
second moment of the alignment:

aaa(2) ≡ 〈uuuuuu〉 = A1 llllll +A2 mmmmmm+(1−A1 −A2)nnn(2) , (7.15)

where lll, mmm, and nnn form a triad of orthogonal unit vectors. In the special case in
which the distribution of particles of the suspension in a given flow is uniaxial, e.g.,
funi = f (|uuu ···nnn|), nnn(xxx, t) denoting the axis of symmetry, one obtains that A1 = A2.
Traditionally, the parameter S2 ≡ 1−3A1 is used. In this case, we have the following
explicit relations for the second and fourth moments of the alignment [73, 82]:

aaa[2]uni
= S2nnn[2] ⇔ aaa(2)uni

= S2nnn(2) +
1
3
(1−S2)111 , (7.16)

and (in cartesian coordinates)
〈
uiu jukul

〉
uni = S4nin jnknl+ (S2 − S4)(δi jnknl +

δikn jnl +δk jninl+ δiln jnk +δ jlnink +δklnin j)/7+ (7−10S2 +3S4)(δi jδkl +δikδ jl +
δilδ jk)/105, where S2 and S4 are scalar measures of the degree of orientation related
to Legendre polynomials: S2 = 〈P2(uuu ···nnn)〉, S4 = 〈P4(uuu ···nnn)〉, cf. Chap. . They must
satisfy − 1

2 ≤ S2,S4 ≤ 1. In the case of perfect alignment S2 = S4 = 1, and in the
case of random alignment S2 = S4 = 0. Note that the odd moments vanish identically
due to symmetry of the distribution function f . Similar relations hold for the higher
moments, but we refrain from writing them.

The uniaxial assumption is not valid for all flows of the suspension. More gener-
ally, the alignment will be biaxial, i.e., A1 	= A2. The biaxial case requires the use of
multiple directors plus additional biaxial scalar measures (see [315] and refs. cited
herein). For this monograph we are however concerned only with those flows for
which this assumption holds since we want to make a comparison to the EL theory,
which assumes uniaxial symmetry. In this case we need only a single unit vector
plus the set {S2i} of scalars to completely describe the alignment. Furthermore, note
that each even-order moment of the alignment introduces a new scalar measure of
the alignment S2i. The EL theory assumes that there is a closure relation so that all
higher-order parameters can be expressed as a function of S2. Such an assumption
is consistent, for example, with a Gaussian distribution about the symmetry axis nnn.
However, it will not be necessary to specify any particular closure relation.

10



7.3 Uniaxial Fluids, Micro-Macro Correspondence 97

7.3.1 Concentrated Suspensions of Disks, Spheres, Rods

Comparing micro- (7.8) with macroscopic (7.1) stress tensors and also comparing
the equation of change for the alignment tensor (7.12) with (7.5) one obtains for
the particular case of concentrated suspensions of rod-like polymers, cf. Sect. 7.2.2,
upon extending from rods (B = 1) to uniaxial ellipsoids also including disks (B =−1)
and spheres (B = 0) the following microscopic interpretation of the EL parameters
[292], with χ ≡ nkBT/(2Dr)

α1 = −2χB2S4 ,

α2 = −χB
(
1+λ−1)S2 ,

α3 = −χB
(
1−λ−1)S2 ,

α4 = 2µ0 +2B2
(

1
5

+
1
7

S2

)
−η

4
35

B2S4 ,

α5 =
3
7

χB2
(

S2 +
4
3

S4

)
+ χBS2 ,

α6 =
3
7

χB2
(

S2 +
4
3

S4

)
−ηBS2 ,

β1 = −χB ,

β2 = 35χ(21+15S2 −36S4)−1 ,

β3 = β1

γ1 = α3 −α2 = 2χBλ−1S2 ,

γ2 = α3 +α2 = −2χBS2 ,

λ ≡ −γ2

γ1
=

α3 −α2

α3 +α2
=

(14+5S2 +16S4)B
35S2

, (7.17)

where λ is the ‘tumbling parameter’. Vector and scalar molecular fields are given by

nnn×hhhn = −n

〈(
uuu× ∂

∂uuu

)
V

〉

uni
,

hS = 35nkBT

〈
uuu

∂
∂uuu

U

〉

uni
(24S4 −10S2 −14)−1. (7.18)

One easily confirms that Parodi’s relation and all other relationships known from
the director theory (summarized in Sect. 7.1) are in full agreement with our micro-
based expressions (7.17). Carlsson’s conjecture [316, 317] on the signs of α2 and α3

provided that S2 is positive is also confirmed by (7.17).

7.3.2 Example: Tumbling

One way to characterize materials is according to the behavior of the director in
a steady shear flow. As discussed by Chandrasekhar [236] and de Gennes [234],
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|λ | < 1 implies that the director always tumbles in steady shear flow, whereas
|λ | ≥ 1 implies that the director has a steady solution. The above expression for
the tumbling parameter λ (not provided by Kuzuu and Doi [73]) has been con-
firmed by Archer and Larson [299] who also took into account numerically the
flow-induced biaxiality showing that there can be a modest but significant effect
on the coefficient λ . Predictions (7.17) have been already compared with experi-
ments [318–320], and extended to biaxial fluids [315]. A very similar expression
for λ (using S4 ∝ S2

2) had been derived early by Hess [74] for the case of uniaxial
symmetry, cf. Chap.10, based on a truncation approximation to the Fokker–Planck
equation, obtaining γ1 ∝ S2

2(1−c1S2
2), and γ2 ∝ −BS2(1+c2S2 −c3S2

2), where c1,2,3

are temperature dependent constants. A typical relaxation time [321] for reorienta-
tions of the director is given by τ = 1/(γ̇

√
λ 2 −1), where γ̇ is the shear rate. Thus τ

is seen to be a function of the order parameters and the axis ratio.
Also the coefficients α2 and α3 determine the type of flow via λ . For a negative

product α2α3 (i.e., |λ | < 1) there is no steady state solution in simple shearing, for
positive α2α3 the molecules will be aligned under shear flow, with a flow angle χ
given by cos2χ = λ−1. In Fig. 7.2, we can see how the sign of α2α3 varies with order
parameter S2 and geometry B (using the closure relation [322] S4 = S2−S2(1−S2)ν

where ν = 3/5, again there is no qualitative difference in the choice of the exponent
ν). According to (7.17), λ −→ B when both S2,S4 −→ 1. Also λ −→ ∞ when both
S2,S4 −→ 0. Thus we will always have tumbling in the case of suspensions of almost
perfectly aligned (i.e., S2,S4 ≈ 1) rigid ellipsoids of revolution but steady solutions

for suspensions with small degree of alignment (S2,S4 ≈ 0). The transition between
the two regimes is given by |λ | = 1. Note that in the case of perfect alignment (i.e.,
S2 = S4 = 1), (7.17) reduces to λ = B and for ellipsoids of revolution we always have
|B| < 1, which is the classical result that a single ellipsoid of revolution tumbles in
steady shear flow [49, 323]. Figure 7.4 indicates the dependence of the tumbling of
the director on the degrees of alignment S2 and S4. These results are independent of
the particular potential, thus apply also to mean-field theory.

The calculated viscosity coefficients in (7.17) are subject to the restrictions given
in Sect. 7.1. From (7.17) it follows that β2 ≥ 0 if and only if S4 ≤ (5S2 + 7)/12.
which excludes arbitrary pairs of values for S2 and S4. The excluded region is shown
in Fig. 7.4. The remaining inequalities are automatically satisfied when β2 ≥ 0.

7.3.3 Example: Miesowicz Viscosities

It is common to measure the three Miesowicz viscosities ηi, i = 1,2,3 defined as
the ratio of the yx-component of the stress tensor and the shear rate γ̇ . The label
i = 1,2,3 refers to the cases where the director nnn is parallel to the x-,y-,z-axis, respec-
tively. An orienting (magnetic) field has to be strong enough to overcome the flow
induced orientation. A fourth coefficient η4 with nnn parallel to the bisector between
the x- and y-axes is needed to characterize the shear viscosity completely. Instead
of η4, the Helfrich viscosity coefficient η12 = 4η4 − 2(η1 + η2) is used in addition
to the Miesowicz coefficients. The ‘rotational’ viscosity γ1 can be measured via the
torque exerted on a nematic liquid crystal in the presence of a rotating magnetic field
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Fig. 7.2. Contour plot of α2α3 as a function of geometry B and order parameter S2. Posi-
tive region corresponds to tumbling regimes, negative region to steady flow alignment. The
dimensionless viscosities are defined by α∗

i := αiDr/(ckBT )

(Tsvetkov effect). The four effective viscosities measurable in a flow experiment, cf.
Fig. 7.3, are related to the EL viscosity coefficients by

η1 = (α4 +α6 +α3)/2 ,

η2 = (α4 +α5 −α2)/2 ,

η3 = α4/2 ,

η12 = α1 . (7.19)

Explicit expression for these quantities are obtained by inserting the viscosity coef-
ficients from (7.17).

7.4 Uniaxial Fluids: Decoupling Approximations

In this section we briefly comment on the validity of closure schemes often used in
the literature, in particular the so called Hinch and Leal (HL) closures. They have
been used to close the infinite number of coupled equations of motion for alignment
tensors, derived from the Fokker–Planck equation such as (6.1). Here we wish to
point out that for the case of uniaxial symmetry there is a single possible closure
which requires the knowledge of a scalar function S4(S2) rather than a full tensorial
relationship, and we will show, that this closure is different from the HL closures.
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Fig. 7.3. For the measurement of the Miesowicz viscosities η1,2,3 and the viscosity η4 the
magnetization – induced by the external magnetic field has to point in flow (1 = x), flow
gradient (2 = y), vorticity (3 = z) direction. The ellipsoids of revolution considered within the
FP approach in this review are characterized by a single shape factor −1 < B < 1 where B > 0
and B < 0 for rodlike and disklike aggregates, respectively

 -0.50 

 -0.25 

  0.00 

 0.25 

 0.50 

 0.75 

 1.00 

S2

 -0.5  -0.2  0.1  0.4  0.7  1.0 
S4

 -0.50 

 -0.25 

  0.00 

 0.25 

 0.50 

 0.75 

 1.00 

S2

 -0.5  -0.2  0.1  0.4  0.7  1.0 
S4

 inside: steady solution exist
 excluded on 
 dissipation  
 grounds  

 outside: tumbling zone            

 |B| = 0.2 
 |B| = 0.6
 |B| = 1.0 

Fig. 7.4. The existence of steady solutions for the director in shear flow depends upon the geo-
metric coefficient B of the ellipsoids and the degrees of alignment S2 and S4. The boundary
between tumbling/non-tumbling (see text) is plotted. As shown in this section, some combi-
nations of S2 and S4 are excluded on dissipation grounds [292]

For systems composed of uniaxial-shaped particles with symmetry axis uuu, the
tensorial second- and fourth-order moments of the (non-anisotropic) alignment are
denoted by aaa(2) = 〈uuuuuu〉, aaa(4) = 〈uuuuuuuuuuuu〉, where 〈·〉 is an orientational average. As
shown before in this monograph it is often convenient to use alternative but equiv-
alent tensorial measures that are symmetric in all indices and traceless when con-
tracted over any pair of indices. We denoted such alignment tensors with the ‘ ’
symbol. For the second and fourth order anisotropic alignment tensor aaa[2] and aaa[4]
one explicitly has aaa[2] = aaa(2) −111/3, and

aaa[4] = aaa(4) −
6
7
{aaa(2)111}sym +

3
35

{111111}sym , (7.20)
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respectively, where {·}sym denotes a symmetrized expression defined by

{XµνYκλ}sym ≡ 1
6
(XµνYκλ +XµκYνλ +XµλYκλ +XνκYµλ +XνλYµκ +XκλYµν)

(7.21)
for the dyadic product of symmetric tensors XXX and YYY . For a more detailed treatment
see Chap. 11, and in particular Sect. 10.2. There are orthogonal unit vectors nnn,,,mmm,,, lll
such that

aaa(2) = λ1nnn(2) +λ2mmmmmm+λ3llllll , (7.22)

or equivalently3

aaa[2] =
(

λ1 −
1
3

)
nnn(2) +

(
λ2 −

1
3

)
mmmmmm+

(
λ3 −

1
3

)
llllll . (7.23)

The λi are the principal values of aaa(2), and the unit vectors nnn, mmm and lll are the principal
directions. The λi are subject to the constraint Traaa[2] = 0, i.e. ∑i λi = 1. Similar re-
lations hold for alignment tensors of arbitrary orders. The symmetry of orientational
distribution f which defines the moments (alignment tensors) is directly reflected by
the number of distinct principal values. For example, for the second-order moment
aaa[2], we have 1,2 and 3 distinct principal value(s) for isotropic, uniaxial, and biaxial
symmetry, respectively. Let us summarize some trivial implications.

Isotropic Symmetry

All eigenvalues are identical, λ1,2,3 = 1/3, implying aaa(2) = 111/3, aaa[2] = 000, aaa(4) =
{111111}sym/5, aaa[4] = 000. Any closure relation for aaa[4] in terms of aaa[2] which should
at least be non-violated close to equilibrium (if isotropic) must therefore fulfill the
relationship aaa(4) = (9/5){aaa(2)aaa(2)}sym.

Uniaxial Symmetry

Two of the principal values of the second-order alignment tensor are equal (say λ2 =
λ3). In this case we can write aaa(2) = S2nnn(2) +(1−S2)111/3, aaa[2] = S2nnn[2], with an order
parameter S2 ≡ (3λ1 − 1)/2. The fourth-order moments are given by aaa[4] = S4nnn[4],
and

aaa(4) = S4 nnn(4) +
6
7
(S2 −S4){111nnn[2]}sym +

1
35

(7−10S2 +3S4){111111}sym . (7.24)

Here S2 and S4 are the uniaxial scalar order parameters. They are related to the
particle orientations by averages of Legendre polynomials: S2 = 〈P2(uuu ···nnn)〉 , S4 =
〈P4(uuu ···nnn)〉, and range in value by −1/2 ≤ S2 ≤ 1, −3/8 ≤ S4 ≤ 1. The principal
direction n is called the uniaxial director. As for the isotropic case, both anisotropic
moments aaa[2] and aaa[4] are simpler to handle than aaa(2) and aaa(4).

3 Using 111 = nnnnnn + mmmmmm + llllll, one can also eliminate one of the eigenvectors from these equa-
tions. From a representation of the type (7.22) we can most easily read of the inverse
of a matrix, here aaa−1

(2) = λ−1
1 nnn(2) + λ−1

2 mmmmmm + λ−1
3 llllll such that aaa(2) · aaa−1

(2) = 111 due to the

orthonormality relations between nnn, mmm, and lll.
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Biaxial Symmetry

For the case of biaxial symmetry see Sect. 10.6.2.

7.4.1 Decoupling with Correct Tensorial Symmetry

Substitution of nnn(2) in terms of aaa[2] and S2 into (7.24) yields

S2
2aaa[4] = S4 aaa[2] aaa[2] . (7.25)

No assumption has been made other than uniaxial symmetry, so that this tensorial
closure relationship is exact for uniaxial and isotropic symmetry, but carries still
unspecified scalar order parameters S2,S4. The generalization of (7.25) is

∀n,lSnSlaaa[n+l] = Sn+l aaa[n] aaa[l] . (7.26)

Obviously, there is not such a simple analog for the biaxial case.
Based on the above representations of the second- and fourth-order alignment

tensors, we now consider possible closure schemes for BBB : aaa(4) with BBB an arbitrary
symmetric and traceless tensor. such a closure is needed, e.g. in (7.12) to derive a
closed form nonlinear equation for the second moment.

Two more commonly cited closures, motivated by HL [324], are the HL1 and
HL2 closures (beside closures which are either invalid in the isotropic or aligned
state, cf. [325], for example).

HL1 Closure

BBB : aaa(4) =
1
5

(
6aaa(2) ·BBB ·aaa(2) −BBB : aaa(2)aaa(2) +2111(aaa(2) −aaa(2) ·aaa(2)) : BBB

)
, (7.27)

HL2 Closure

BBB : aaa(4) = BBB : aaa(2)aaa(2) +2aaa(2)·BBB·aaa(2) −
2aaa(2) ·aaa(2) : BBB

aaa(2) : aaa(2)
aaa(2)·aaa(2) (7.28)

+e

(2−6aaa(2):aaa(2))

(1−aaa(2):aaa(2))
[52BBB

315
− 8

21
(BBB ·aaa(2) +aaa(2) ·BBB− 2

3
BBB : aaa(2))111

]
.

These are based on interpolation between weak and strong flow limits in a brownian
suspension of rods.

For the closure (7.25), which is exact for the case of uniaxial symmetry, and
relies only on an approximation between scalar quantities S4 and S2, we obtain by
straightforward calculation, for the special case S4 = S2

2, which fulfills S4 = 0↔ S2 =
0 and S4 = 1 ↔ S2 = 1 and is the only consistent one which is parameter-free:
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KS1 Closure

BBB : aaa(4) =
1

105

{
2BBB−10(BBB ·aaa(2) +aaa(2) ·BBB)+35BBB : aaa(2)aaa(2)

−20(BBB ·aaa(2) ·aaa(2) +aaa(2) ·aaa(2) ·BBB)
+70aaa(2) ·BBB ·aaa(2) +4BBBaaa(2) : aaa(2)

−5111(aaa(2) : BBB+2Tr[BBB ·aaa(2) ·aaa(2)])
}

. (7.29)

All the above closures (HL1,HL2,KS1) correctly reduce to the expected 2BBB/15
and BBB : nnn(4) for isotropic symmetry (aaa(2) = 111/3) and perfect uniaxial alignment
(aaa(2) = nnn(2)), respectively. In order to compare these closures one can plot the non-
vanishing components of the quantity BBB : aaa(4) vs the amplitude A of BBB, where BBB has
the following form BBB = A((2− a− 2b,b,0),(b,b− 1,0),(0,0,a + b− 1)). For the
(relevant) case that BBB represents a traceless velocity gradient, and the prefactor a
flow rate, the choices a = 0,b = 1 and a = b = 0 characterize shear (A: shear rate)
and uniaxial elongational (A: elongation rate) flow fields, respectively. As for the
HLx closures, Tr(BBB : aaa(4)) = BBB : aaa(2) holds for (7.29). Any reasonable closure spec-
ified by S4 in terms of S2 (for ‘conventional fluids’ with positive order parameters)
should at least satisfy 0 < S4 < S2. For example, the ansatz S4 = S2 − S2(1− S2)ν

parameterized by 0 < ν < 1 has been proposed in [322], the corresponding closures
are called KSν-closures, and contain the KS1 closure as a special case. The HLx
closures, however, allow to produce pairs S2,S4 which fall outside this regime. The
closure (7.25), which is immediately extended to higher order tensors, may be pref-
ered if one wants to keep the exact tensorial symmetry while performing a closure
relationship between (only) two scalar quantities for a closure involving aaa(4) and, in
general, n scalar functions for a closure involving aaa(2n).

7.5 Ferrofluids: Dynamics and Rheology

Ferrofluids containing spherical colloidal particles with a permanent ferromagnetic
core have been modeled by a system composed of ellipsoidal aggregates (transient
chains) along the lines indicated in the previous sections [97, 326, 327]. The stress
tensor of this model equals expression (7.8). The Fokker–Planck equation for the
orientation distribution function is given by (6.1) with orienting torque (7.11). The
potential Vµ for a magnetic moment µµµ = µuuu in the local magnetic field HHH is given
by −βVµ = β µHHH · uuu = hhh · uuu, with β = 1/(kBT ). Hereby the dimensionless mag-
netic field hhh = µHHH/kBT and its amplitude h (Langevin parameter) are introduced.
For spheres, B = 0, the Fokker–Planck equation reduces to the kinetic equation for
dilute ferrofluids developed in [328]. Not only the equilibrium magnetization but all
equilibrium order parameters are calculated explicitly as function of the magnetic
field. From the equilibrium distribution of the Fokker–Planck equation (6.1) upon
inserting the above potential Vµ , cf. Chap. 11,

feq(uuu) ∝ e−βVµ =
h

4π sinh(h)
ehhh·uuu , (7.30)



104 7 Elongated Particle Models

one obtains 〈uuu〉eq = L(h)hhh/h, where L(x) ≡ coth(x)− 1/x is known as ‘Langevin
function’, and the order parameters coincide with ratios of the modified spherical
Bessel functions, Seq

j (h) ≡
〈
Pj(uuu)

〉
eq = I j+1/2(h)/I1/2(h). Therefore, the following

recursion formula is obtained:

Seq
j+1(h) = −2 j +1

h
Seq

j (h)+Seq
j−1(h) ,

Seq
0 (h) = 1 ,

Seq
1 (h) = L(h) = coth(h)−1/h . (7.31)

The equilibrium magnetization MMMeq = nµ 〈uuu〉eq = nµL(h)hhh/h is the classical result
for a system of non–interacting magnetic dipoles. The equation for the first moment,
i.e., the magnetization, obtained via integration from the Fokker–Planck equation
(6.1 with V = Vµ ) reads

∂t 〈uuu〉 = ωωω ×〈uuu〉+B〈(111−uuuuuu)uuu〉 :γγγ − 1
τ
〈uuu〉+ 1

2τ
(111−〈uuuuuu〉) ·hhh . (7.32)

The one for the second is given in [97] and can be also immediatly derived from
the more general equation of change for moments (11.26) in Chap. 11. Using these
equations of change, the explicit contribution of the potential Vµ to the full stress
tensor can be eliminated. In particular, we obtain for the antisymmetric part of the
stress tensor σσσa, upon inserting the following result

hhh = τΠΠΠ−1·
(
∂t 〈uuu〉−ωωω ×〈uuu〉−B[γγγ ·〈uuu〉−〈uuuuuuuuu〉 :γγγ]+ τ−1 〈uuu〉

)
, (7.33)

where ΠΠΠ−1 denotes the inverse of the matrix ΠΠΠ ≡ (111−〈uuuuuu〉), an expression in terms
of the moments alone: σσσ a =−γ1(NNN×nnn)−γ2(γγγ ·nnn)×nnn with the viscosity coefficients
γ1 ∝ (3S2

1)/(2+S2), γ2 ∝ −B{3S1(3S1 +2S3)}/{5(2+S2)}, and a shape-dependent
proportionality coefficient [327]. By performing NEBD simulation [97] for this sys-
tem it had been observed that the assumption of uniaxial symmetry can be success-
fully applied in a wide regime of shear rates and magnetic fields, see Fig. 7.5 for
a schematic overview. This figures also summarizes (closure) relationships between
the order parameters for different regimes. In [329] the stationary and oscillatory
properties of dilute ferromagnetic colloidal suspensions in plane Couette flow were
studied. Analytical expressions for the off-equilibrium magnetization and the shear
viscosity are obtained within the so-called effective field approximation (EFA), and
the predictions of a different approximation based on the linearized moment expan-
sion (LME) were obtained. Direct NEBD simulation of the Fokker–Planck equation
were performed in order to test the range of validity of these approximations. It
turns out that both EFA and LME provide very good approximations to the station-
ary off-equilibrium magnetization as well as the stationary shear viscosity in case
of weak Couette flow if the magnetic field is oriented in gradient direction. If the
magnetic field is oriented in flow direction, and for small amplitude oscillatory Cou-
ette flow, the LME should be favored. A sample result which estimates the quality
of the approximations is given in Fig. 7.6. Figure 7.7 provides a sample time series
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Fig. 7.5. The shaded background represents a measure for the (minor) relevance of biaxiality –
obtained via NEBD – on the prediction of the rotational viscosity γ1 as function of dimension-
less magnetic field h and vorticity τγ̇ [97]. Shading ranges from white (uniaxial) to black.
In the top left corner (data for τγ̇ = 10, h = 1) we have a 1.2% relative deviation between
uniaxial. and biaxial formulas for γ1. The depicted regimes refer to analytical solutions of the
FP equation. A: weak magnetic field, B: weak flow field, C: deterministic limit. The figure
summarizes analytical as well as approximative results for these regimes. Adapted from [326]

for a ferrofluid we obtained via MD for a collection of (LJ) repulsive freely rotating
permanent magnetic dipoles. Here, it is illustrated why ferrofluids exhibit anisotro-
pic viscosities even in the absence of a magnetic field: often due to chain forma-
tion [330]. Not just chains, but other types of agglomerates have been observed via
MD as well. Also antiferromagnetic phases belong to this class. This phase can be
stabilized if attractive (LJ) interactions – beside dipolar interactions – are present.

7.6 Liquid Crystals: Periodic and Irregular Dynamics

Detailed theoretical studies [332, 333], based on solutions of a generalized Fokker–
Planck equation [74,313], revealed that in addition to the tumbling motion, wagging
and kayaking types of motions, as well as combinations thereof occur. Recently, also
chaotic motions were inferred from a moment approximation to the same Fokker–
Planck equation leading to a 65 dimensional dynamical system [334] for uniaxial
particles. While we are going to consider uniaxial particles (following [331]) one
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Fig. 7.6. Stationary relative change 
yx of the shear viscosity for a dilute suspension of ferro-
magnetic particles, cf. Sect. 7.5, in plane Couette flow as a function of the Langevin parameter
h. The magnetic field was oriented in flow direction, dimensionless shear rate γ̇ = 0.1. Sym-
bols represent the result of the NEBD simulation, full line correspond to the EFA, dashed line
to the LME approximation. The value of the axis ratio of the ellipsoid was chosen as r = 2
(B = 3/5) for the lower and r = 5 (B = 12/13) for the upper curves. Adapted from [329]

Fig. 7.7. Sample MD shapshot for a simple ferrofluid with increasing (top left to bottom right)
permanent magnetic moment, where external orienting (flow, magnetic) fields are absent. The
figure serves to demonstrate, that ferrofluids exhibit anisotropic viscosities even in the absence
of a magnetic field (due to chain formation), and that they can be modeled with a combination
of the methods presented for colloidal suspensions and FENE-C wormilke micelles
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√
5λSeq

2 where Seq
2 ≡ limΓ→0 S2 is an

equilibrium order parameter. Adapted from [331]

may notice that for long triaxial ellipsoidal non-brownian particles chaotic behavior
had been also predicted in [335]. Point of departure is the following equation of
change for the alignment tensor (notice the similarity with (6.10))

τa (∂aaa[2]/∂ t −2 ωωω ×aaa[2] )+ΦΦΦ(aaa[2]) = −
√

2τap γγγ . (7.34)

The quantity ΦΦΦ is the derivative of a Landau-de Gennes free energy Φ , (7.36) below,
with respect to the alignment tensor. It contains terms of first, second, and third order
in aaa[2]. The equation stated here was first derived within the framework of irreversible
thermodynamics [301,302], where the relaxation time coefficients τa > 0 and τap are
considered as phenomenological parameters, for their microscopic interpretation see
Chap. 7. Equation (7.34) can also be derived, within certain approximations [336],
from the Fokker–Planck used there. Then τa and the ratio −τap/τa are related to the
rotational diffusion coefficent Dr and to a non-sphericity parameter associated with
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Fig. 7.9. Feigenbaum diagram of the period doubling route (same system as for Fig. 7.8). for
the particular shear rate Γ = 3.74 . . .3.75. Plot of the Poincaré map a4(ti) for i = 1 . . .82 at a3 =
0 vs. the ‘control parameter’ Γ , the dimensionless shear rate. The ai’s denote components of
the alignment tensor with respect to the symmetry adapted set of basis tensors (2.9,2.11,2.12).
The inset shows the shear stress vs time for two fixed shear rates, Γ = 3.778 (thin line), and
Γ = 3.776 (thick line), where the latter case exemplifies transient, rheochaotic, behavior. All
quantities in dimensionless units. Adapted from [331] phase diagram

the shape B of a particle. Equation (7.34) is applicable to both the isotropic and the
nematic phases. Limiting cases that follow from this equation are the pretransitional
behavior of the flow birefringence [314,337] in the isotropic phase and the EL theory
(Sect. 7.1) in the uniaxial nematic phase. Equation (7.34) has beed discussed inten-
sivley in recent, in particular experimental, works, see e.g. [179, 338] and refs. cited
herein.

7.6.1 Landau – de Gennes Potential

The five components ai of aaa[2] – relative to the symmetry-adapted basis system (2.9,
2.11, 2.12) – are expressed in units of the magnitude of the equilibrium alignment
at the temperature (or concentration) where the nematic phase of a lyotropic LC
coexists with its isotropic phase. In its dimensionless form the Landau–de Gennes
free energy invokes a single model parameter ϑ , viz.,

2Φ = ϑ a2 −2 I(3) +a4 , (7.35)

with
a2 ≡ aaa[2] : aaa[2], I(3) ≡

√
6Tr(aaa[2]

3), (7.36)
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with aaa[2]
3 = aaa[2] · aaa[2] · aaa[2]. Here I(3) is sometimes4 called ‘third order scalar invari-

ant’, a2 is related to the Maier-Saupe order parameter S2 as a2 = 5S2
2, and for the

derivative with respect to aaa[2] entering the equation of change of the alignment ten-
sor, we have, using (7.36),

ΦΦΦ(aaa[2]) =
∂Φ

∂aaa[2]
= ϑaaa[2] −3

√
6 aaa[2]

2 +2a2 aaa[2] . (7.38)

The dynamical system (7.34) has been rewritten in terms of the ai’s in [336] and
contains three control parameters two of which are determined by the state point
and the material chosen, the third control parameter is a dimensionless shear rate
Γ ∝ γ̇ [339]. Equation (7.34) with a3,4 = 0 decribes correctly the flow aligned state
as well as the tumbling and wagging behavior of the full system for certain ranges
of control parameters, see [336] for a detailed analysis. Here we wish focus on the
symmetry breaking solutions with a3,4 	= 0. These solutions are associated with
kayaking types of motions, but also rather complex and chaotic orbits are found. We
use a fourth-order Runge-Kutta method with fixed time step to solve the dynamic
system.

7.6.2 In-Plane and Out-of-Plane States

A solution phase diagram of the various in-plane and out-of-plane states is drawn for
ϑ = 0 in Fig. 7.9, in its caption we introduce abbreviations for the types of orbits.
The three orbits, T, W, A were identified in [336]. The kayaking orbits [332,333], KT
and KW, are distinguished from each other according to [340]. Because the physical
situation is invariant under the transformation a3,4 →−a3,4, two equivalent kayaking
states exist. The system shows rather complicated dynamical behavior in region C of
the solution diagram where neither one of the simple periodic states nor an aligning
state is stable. The specific orbits had been classified in [331] as Periodic KT/KW
composite states where the KW sequences are damped with increasing shear rate;
Irregular KT or KT/KW states for which the largest Lyapunov exponent is of or-
der 0.01. . . 0.05; Intermittent KT, and iv) Period doubling KT states. The route to
chaos for increasing shear rates had been found to depend on the tumbling parame-
ter. When the flow-aligned (A) phase is approached from the complex (C) regime,
the oscillation period grows infinitely high, in contrast to the behavior at the KW→A
transition, where the amplitude of the oscillation gets damped. The resulting bifur-
cation plot has a striking similarity to the Feigenbaum diagram of the logistic map,

4 In view of (10.59) and Tab. 10.1, we can express I(3) in terms of the tensor invariant I3,
I(3) = 3

√
6 I3, further a2 = Traaa[2]

2 = 2I2, such that (7.36) can be also rewritten as

Φ = ϑ I2 −
3
2

√
6 I3 +2 I2

2 . (7.37)

Notice, that due to the Caley-Hamilton theorem even the most general ansatz just contains
exactly two independent matrices, aaa[2] and aaa[2]

2. Any higher powers could be rewritten as
a linear combination of these two matrices.
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xn+1 = rxn(1−xn). The distance between successive period doubling steps in Fig. 7.9
shrinks rapidly with the order of the period as in the Feigenbaum diagram. Even the
chaotic region exhibits the same type of banded structure and has windows of peri-
odic behavior. However, at Γ ≈ 3.748, the chaotic band enlarges abruptly. The reason
for this behavior is the equivalence of the states a3,4 and −a3,4. To test the similarity
of the period doubling routes, the values Γn where a period of order 2n emerges and
the value Γ∞ for the beginning of chaos were calculated in [331] for n = 1 . . .5 Like
for the logistic map, the Γn scale according to a law Γn = Γ∞ −C δ−n for n � 1, with
the Feigenbaum constant δ . For our problem, a nonlinear fit yields δ = 4.83±0.02.
The value agrees qualitatively with that for the logistic map. δ = 4.669 . . ., and a
similar value had been reported in [334]. Irregular behavior of the alignment ten-
sor aaa[2] immediately converts into irregular behavior for rheological properties, cf.
Fig. 7.9 for an example. Based on the findings reported here, the inhomogeneous
extension [304, 341, 342] of the present model can be expected to be of relevance
in describing experimentally observed instabilities, irregular banded and striped tex-
tures [343–346].



8

Connection between Different Levels of Description

8.1 Boltzmann Equation

One of the major issues raised by the Boltzmann equation is the problem of the
reduced description. Equations of hydrodynamics constitute a closet set of equa-
tions for the hydrodynamic field (local density, local momentum, and local tem-
perature). From the standpoint of the Boltzmann equation, these quantities are
low-order moments of the one-body distribution function, or, in other words, the
macroscopic variables. The problem of the reduced description consists in deriv-
ing equations for the macroscopic variables from kinetic equations, and predicting
conditions under which the macroscopic description sets in. The classical meth-
ods of reduced description for the Boltzmann equation are: the Hilbert method,
the Chapman–Enskog method, and the Grad moment method, reviewed in [98].
The general approach to the problem of reduced description for dissipative system
was recognized as the problem of finding stable invariant manifolds in the space of
distribution function. The notion of invariant manifold generalizes the normal so-
lution in the Hilbert and in the Chapman–Enskog method, and the finite-moment
sets of distribution function in the Grad method. A generalization of the Grad mo-
ment method is the concept of the quasiequilibrium approximation, cf. Sect. 2.6 and
[94,98]. Boltzmann’s kinetic equation has been expressed in GENERIC form [347],
cf. Sect. 8.3, demonstrating that no dissipative potential is required for representing
these equations.

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 111–142 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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8.2 Generalized Poisson Structures

A similar formal structure, namely a symplectic structure, for thermodynamics and
classical mechanics has been noted early, e.g., by Peterson in his work about the
analogy between thermodynamics and mechanics [51]. Peterson notes the equations
of state – by which he means identical relations among the thermodynamic vari-
ables characterizing a system – are actually first-order partial differential equations
for a function which defines the thermodynamics of the system. Like the Hamilton-
Jacobi equation, such equations can be solved along trajectories given by Hamil-
ton’s equations, the trajectories being quasistatic processes which obey the given
equation of state. This gave rise to the notion of thermodynamic functions as infini-
tesimal generators of quasistatic processes, with a natural Poisson bracket formula-
tion. This formulation of thermodynamic transformations is invariant under canon-
ical coordinate transformations, just as classical mechanics is. The time-structure
invariance of the Poisson bracket as manifested through the Jacobi identity has been
used to derive constraint relationships on closure approximations [57]. Next we turn
to the modern GENERIC framework [54] which offers a particular useful general-
ized Poisson structure (GPS). The Poisson structure, together with a Jacobi iden-
tity had been recognized recently in two-fluid electrodynamics, in the generalized
Heisenberg picture quantum mechanics, fluid models of plasma physics, and other
branches of physics, cf. [38,54]. There is a variety of directions, which have not yet
been worked out in detail, but extensively discussed. Upon these are nonholonomic
constraints [348], boundary conditions [349,350], and extensions to so called super-
Poisson structures [351], Nambu–Jacobi brackets [352, 353]. For these structures a
number of different representations is known such that knowledge can be directly
passed over to GENERIC concerning the development of efficient algorithms solv-
ing the GENERIC equations.

8.3 GENERIC Equations

The GENERIC equations [38, 54] preserve their structure across different levels
(mirco-macro) of description for beyond-equilibrium systems. For a given set of
system variables xxx (defining the actual state space) the following (reversible and
dissipative) brackets

{A,B} ≡ δA
δxxx

·LLL · δB
δxxx

, [A,B] ≡ δA
δxxx

·MMM · δB
δxxx

(8.1)

for arbitrary functionals A,B on state space, the time evolution equation for A,

dA
dt

= {A,H}+[A,S] , (8.2)

the degeneracy conditions

MMM · δH
δxxx

= 0, LLL · δS
δxxx

= 0 , (8.3)
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the antisymmetry of LLL, the Casimir symmetry of MMM, together with the positive defi-
niteness of MMM and the following Jacobi identity (for arbitrary functionals A,B,C)

0 = {{A,B},C}+{{B,C},A}+{{C,A},B} , (8.4)

constitute the GENERIC framework [38, 54]. The Hamiltonian H and entropy S
essentially model the system under consideration, whereas LLL can be motivated
by analyzing the transformation behavior of variables, and MMM models the dissipa-
tive motion of variables. The requirement for energy conservation and increasing
entropy, respectively, implies the antisymmetry of LLL and a degeneracy condition
and positive semidefinite block MMM. The Jacobi identity must hold in order to en-
sure a self-consistent time-invariant description. A large number of thermodynam-
ically admissible (generalized and extended) physical models has been collected at
www.polyphys.mat.ethz.ch.

For a GENERIC bracket one can deduce the following evolution equation

d{A,B}
dt

=
{

dA
dt

,B

}
+
{

A,
dB
dt

}
= {{A,B},H} . (8.5)

This expression reflects the time structure invariance of a Poisson bracket, i.e., the
operator LLL behaves as a ‘conserved’ quantity. If the subscript t denotes the time-
dependent solution Ft of the evolution equation dFt/dt = {Ft ,H}, then the Jacobi
identity implies time structure invariance in the sense that {A,B}t = {At ,Bt} for
arbitrary functions A, B on state space. The definition (8.1) implies that when eval-
uating the Jacobi identity (8.4) second derivatives of the functions A,B,C would
appear in principle. However, these second derivatives cancel pairwise, simplifying
the Jacobi identity. The bracket of classical point mechanics fulfills the Jacobi iden-
tity since all elements of the matrix LLL are constant. It is sufficient to test the Jacobi
identity against three linear functions [354] (this reference also provides a code for
evaluating Jacobi identities). Worked out examples are given in [38, 354].

Dynamic GENERIC equations for a single-segment reptation model without in-
dependent alignment, incorporating ideas of convective constraint release and aniso-
tropic tube cross section in flow [355] have been developed by Öttinger [356], and
investigated in [175], see also Sect. 6.1.

8.3.1 Building Block LLL

A large number of explicit expressions, and procedures for the construction of
GENERIC building blocks can be found in the literature, cf. [54]. In order to just
write down an expression for a simple example, we choose the rarefied gas, since
its building blocks will be explicitly needed to perform the simulations of Sect. 8.9.
Further simple examples, including classical hydrodynamics, piston and cylinder,
reptation model for polymer melts, where, at the same time also the Jacobi identity
is explicitly tested, can be found in [354].

In the operator notation for Poisson matrices [38] the transformation formula
LLL0 → LLL leads from the Poisson operator for the Boltzmann equation [357] to the
following element of the Poisson matrix associated with the observables A and B,
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LAB(rrr) = −
∫

Â(rrr, ppp)
∂
∂ rrr

· f (rrr, ppp)
∂ B̂(rrr, ppp)

∂ ppp
d3 p

−
∫

f (rrr, ppp)
∂ Â(rrr, ppp)

∂ ppp
· ∂

∂ rrr
B̂(rrr, ppp)d3 p . (8.6)

Rarefied Gas

Specializing this result to the pairs of components of xxx ≡ (ρ,vvv,T,xxx4) with

xxx4 ≡
m

kBT N
cccccc, ccc ≡ ppp

m
−κκκ · rrr , (8.7)

cf. Sect. 8.9, we obtain for the homogeneous case (no spatial temperature or density
gradients)

L(rrr) = −

⎛

⎜⎜
⎝

0 0 0 0
0 −ρ−1ωωω 0 LLL24

0 0 0 LLL34

0 LLL42 LLL43 LLL44

⎞

⎟⎟
⎠ , (8.8)

where ΩΩΩ ≡ (κκκ −κκκT )/2 is the vorticity tensor, and the beyond-hydrodynamic entries
in this Poisson matrix are

(L24)i jk =
1
ρ

{

x4ik
∂

∂ r j
+ x4 ji

∂
∂ rk

− 2
3

x4 jk

[
xxx4 ·

∂
∂ rrr

]

i

}

, (8.9)

(L42)i jk =
1
ρ

{

x4k j
∂

∂ ri
+ x4ik

∂
∂ r j

− 2
3

x4i j

[
xxx4 ·

∂
∂ rrr

]

k

}

, (8.10)

LLL34 = −LLL43 =
4m

3ρkB
(ΩΩΩ · xxx4 − xxx4 ·ΩΩΩ) , (8.11)

(L44)i jkl = − 2m
ρkBT

[
2
3

x4i j(ΩΩΩ · xxx4 − xxx4 ·ΩΩΩ)kl +
2
3
(ΩΩΩ · xxx4 − xxx4 ·ΩΩΩ)i j x4kl

+x4ikΩ jl + x4ilΩ jk + x4 jlΩik + x4 jkΩil

]

.

(8.12)

In the above, x4i j denote components of xxx4. The components LLL24 and LLL42 vanish
for homogeneous systems. In determining the explicit Poisson matrix (8.8), all third
moments of the peculiar velocity ccc vanish. The precise functional form of the distrib-
ution f (rrr, ppp) has actually been irrelevant and, in particular, the same Poisson matrix
would have been obtained with Grad’s ten moment approximation [358]. As a conse-
quence of the rigorous nature of the procedure, the Poisson bracket implied by (8.8)
satisfies the Jacobi identity [354].
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Energy for the Rarefied Gas, Evolution Equation

The energy E for the rarefied gas reads

E(xxx) =
∫ (

1
2

ρ vvv2 +
3
2

ρ
m

kBT

)
d3r , (8.13)

in which the kinetic energy and the internal energy of an ideal gas can be recognized.
Here, xxx = (ρ,vvv,T,xxx4) denotes the full list of state variables, i.e., hydrodynamic ones
supplemented by Grad’s moment xxx4 ≡ 〈ΠΠΠ 4〉xxx from (8.50). A contribution due to the
interaction potential, (4.1), can be neglected in (8.13) because for a rarefied gas it is
small compared to the kinetic counterpart. It is also consistent with the fact that in
the limit of vanishing volume of particles a finite mean free path remains, known as
Grad’s limit. With E from expression (8.13) we have

δE/δxxx =

⎛

⎜⎜
⎝

1
2m (mv2 +3kBT )

ρ vvv
3ρkB/(2m)

000

⎞

⎟⎟
⎠ . (8.14)

The summation of products ∑4
k=1 LLL4k · δE/δxk then yields the reversible part of the

evolution equation for xxx4, which appears on the rhs of (8.54). For the lhs of this
equation, see Sect. 8.3.2.

8.3.2 Building Block MMM

Friction matrices can be calculated from the Green-Kubo-type formula,

MMM =
1
kB

∫ τ

0

〈
ẋxx f (t)ẋxx f (0)

〉
xxx dt , (8.15)

while using the symbolic notation of [54]. Here τ is an intermediate time scale sep-
arating the slow degrees of freedom from the fast ones, ẋxx f is the rapidly fluctuating
part of the time derivative of the atomistic expressions for the slow variables xxx, and
the average indicated by the pointed brackets is over an ensemble of atomistic tra-
jectories consistent with the coarse-grained state xxx at t = 0 and evolved according to
the atomistic dynamics to the time t. We assume that the correlation function (8.15)
decays sufficiently fast with increasing time difference t so that the integral is finite.
In order to get a converged expression for the friction matrix we would like to take τ
large, but then we are faced with two problems: (i) the separation of time scales may
not be sufficiently pronounced, and (ii) the evaluation of (8.15) in simulations leads
to large error. As a consequence of problem (i), the slow variables begin to change in
the time range considered in the integral (8.15), and one obtains corrections depend-
ing on the ratio of fast to slow time scales [359]. If one would like to to consider large
τ then one should modify the slow time evolution by a control mechanism (cf. our
multiplostatted equations of Sect. 8.9.1) that artificially keeps xxx constant, where the
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effect of the control mechanism should be kept of the same order as the unavoidable
corrections depending on the ratio of fast to slow time scales. The present discussion
follows strictly [54]. By assuming that the system is invariant under time translations
and that it possesses a usual bare Onsager–Casimir symmetry (which leads to the
factor 2 in the denominator), we obtain

MMM(xxx) =
1

2kB

∫ τ

−τ

〈
ẋxx f (t)ẋxx f (0)

〉
xxx dt

=
1

2kBτ

∫ τ

0

∫ τ

0

〈
ẋxx f (t ′′)ẋxx f (t ′)

〉
xxx dt ′′dt ′ , (8.16)

For the last step in (8.16), which is valid for large τ only, we have exploited the fact
that only small time-differences t ′′ − t ′ contribute to the integral. Equation (8.16) can
be rewritten as

MMM(xxx) =
τ

2kB

〈{
1
τ

∫ τ

0
ẋxx f (t ′′)dt ′′

}{
1
τ

∫ τ

0
ẋxx f (t ′)dt ′

}〉
. (8.17)

Using the exact time evolution operator L̂ for the microscopic dynamics, we have


τ ΠΠΠ(zzz) =
∫ τ

0
ẋxx f (t ′)dt ′ = ΠΠΠ(zzz(τ))−ΠΠΠ(zzz(0))−

∫ τ

0

〈
iL̂ΠΠΠ

〉
ΠΠΠ (zzz(t ′)) dt ′ , (8.18)

where ∫ τ

0

〈
iL̂ΠΠΠ

〉
ΠΠΠ (zzz(t ′)) dt ′ ≈ 〈ΠΠΠ(zzz(τ))〉xxx −〈ΠΠΠ(zzz(0))〉xxx (8.19)

can usually be neglected in the average (8.17) as a small deterministic effect (corre-
sponding to the slow dynamics) on top of the dominating fluctuations (resulting from
fast variables). We thus have the integrated version of (8.17),

MMM(xxx) =
1

2kBτ
〈
τ ΠΠΠ(zzz)
τ ΠΠΠ(zzz)〉xxx . (8.20)

This equation is a generalization of a standard result (see, e.g., (2.107), (2.108)
of [360]). In the context of diffusion, (8.15) corresponds to an expression for the
diffusion coefficient in terms of the velocity autocorrelation function associated with
the names of Green and Kubo, whereas (8.20) corresponds to a diffusion coefficient
in terms of the mean square displacement often associated with the name of Einstein.
Alternate formulas have been discussed in [361, 362] and Sect. 6.5.5 of [360]. The
friction matrix MMM(xxx) (8.20) is used in (8.49).

Rarefied Gas

In the present setting, the components Mi j with i, j ∈ {1,2,3} related to density, ve-
locity, and temperature, naturally vanish for an isothermal, homogeneous, rarefied
gas. Analytic considerations in the context of the structured version of Grad’s mo-
ment method result in MMMi4 = MMM4i = 0 for i ∈ {1,2,3} and we are left with the coeffi-
cient MMM44 which is obtained from the fluctuations of the nonequilibrium variable ΠΠΠ 4

and enters (8.54) via ∑4
k=1 MMM4k ·δS/δxk = MMM44 ·δS/δxxx4 = kBMMM44 ·λλλ 4.
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8.4 Dissipative Particles

Because large-scale NEMD simulation can bridge time scales dictated by fast modes
of motion together with slow modes, which determine viscosity, it can capture the
effects of varying molecular topology on fluid rheology resulting, e.g., from chem-
ical reactions. Mesoscopic regimes involving scales exceeding several nsec and/or
micrometers require the ‘fast’ molecular modes of motion to be eliminated in favor
of a more coarse grained representation, where the internal degrees of freedom of the
fluid are ignored and only their center of mass motion is resolved. On this level, the
particles will represent clusters of atoms or molecules, so called, dissipative particles
(DPD). It is possible to link and pass the averaged properties of molecular ensem-
bles onto dissipative particles by using bottom up approach from NEMD/NEBD by
means of the somewhat systematic coarse-graining procedure [363]. GENERIC had
been used to construct modifications of Smoothed Particle Hydrodynamics (SPH)
including thermal fluctuations and DPD in [364]. A method suited for the efficient
treatment of polymer solution dynamics is the Lattice Boltzmann (LB) method and
its improved versions [365]. A GENERIC formulation of LB has been discussed
in [366]. In its application to polymer solution dynamics, the polymer itself is still
treated on a simple molecular level using a bead-spring lattice model, but the sol-
vent molecules are treated on the level of a discretized Boltzmann equation. In this
way the hydrodynamics of the solvent is correctly captured, and the hydrodynamic
interaction between different units on the polymer chain, which is mediated by the
hydrodynamic flow generated within the solvent through the motion of the polymer,
is present in the simulation without explicit treatment of all solvent molecules. It
is expected, that NEMD, DPD and LB together can capture both microscopic and
macroscopic scales [367].

8.5 Langevin and Fokker–Planck Equation, Brownian Dynamics

8.5.1 Motivation

In order to ‘derive’ a diffusion, or Fokker–Planck equation, we consider random vari-
ables XXX(t) related to a stochastic process, characterized by realizations (xxx1, t1), (xxx1, t1)
etc. with t1 ≥ t2. For a Markov process, the conditional probability for a realization
becomes

p(xxx1, t1;xxx2, t2; ..|yyy1,τ1;yyy2,τ2; ..) =
p(xxx1, t1;xxx2, t2; ..;yyy1,τ1;yyy2,τ2; ..)

p(yyy1,τ1;yyy2,τ2; ..)
= p(xxx1, t1;xxx2, t2; ..|yyy1,τ1) , (8.21)

i.e., the ‘future’ depends on the present state only, but not on information about past
states. Now making use of the so called Chapman-Kolmogorov equation for the
jump probability

p(xxx1, t1|xxx3, t3) =
∫

p(xxx1, t1|xxx2, t2)p(xxx2, t2|xxx3, t3) , (8.22)
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one obtains,1 up to terms of order τ2:

p(xxx, t + τ|xxx′, t) = (1− τ a(xxx, t))δ (xxx− xxx′)+ τw(xxx,xxx′, t)+o(τ2) , (8.23)

with jump rate a(xxx′, t) =
∫

w(xxx,xxx′, t)dxxx, and w is a transition rate w(xxx → xxx′) at time
t. For

p(xxx, t) =
∫

p(xxx, t|yyy, t0)p(yyy, t0)dyyy , (8.24)

in the limiting case τ → 0, the Chapman-Kolmogorov equation (8.22) is a master
equation for the probability function

∂
∂ t

p(xxx, t) =
∫

dxxx′ w(xxx,xxx′, t)p(xxx′, t)−w(xxx′,xxx, t)p(xxx, t) , (8.25)

expressing the change of a ‘long-time’ quantity in terms of an integral over short time
information contained in the transition probability. If we further restrict ourself to a
diffusion processes, where the random variable is allowed to perform ‘small jumps’,
and where p is a smooth function of xxx, the diffusion process is characterized by its
first and second moments [368]

∫
(yyy− xxx)p(yyy, t + τ|xxx, t)dyyy ≡ AAA(xxx, t)τ +o(τ2) , (8.26)

∫
(yyy− xxx)(yyy− xxx)p(yyy, t + τ|xxx, t)dyyy ≡ DDD(xxx, t)τ +o(τ2) , (8.27)

i.e., the transition probability for small times is Gaussian distributed with mean value
AAA(xxx, t) and variance (matrix) DDD(xxx, t). We have AAA(xxx, t) =

∫
(yyy− xxx)w(yyy,xxx, t)dyyy. Comb-

ing (8.24), (8.25), and (8.27) directly yields the Fokker–Planck equation (8.29). For
a more rigorous introduction to Fokker–Planck equations see [368, 369], for a large
range of applications for anisotropic and polymeric fluids see Chap. 11.

8.5.2 Interpretation, and Langevin Equation

In order to apply the GENERIC framework it is important to identity the rele-
vant (state) variables which may sufficiently describe the given physical system.
In Chap. 6 we dealt with primitive path models which certainly are more abstract
and less dimensional objects than FENE chains discussed in the foregoing sections.
With the treatment of elongated particles (Chap. 7) we continued the way through
models possessing a decreasing number of molecular details. We therefore provide
some general comments on how to reduce the number of variables in those dynami-
cal model systems, which are described in terms of stochastic differential equations,
such as Langevin equations for a set of stochastic variables xxx, whose typical struc-
ture is to split the equation of motion for a variable into a deterministic (drift) plus a
stochastic (diffusion) part

d
dt

XXX = AAA(XXX)+BBB · η̃ηη (8.28)

1 Just use δ (xxx1 − xxx2)δ (xxx2 − xxx3) = δ (xxx1 − xxx3) below the integral.
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with time t and ‘noise’ η̃ηη or equivalent Fokker–Planck equations (used at several
places throughout this monograph) for the corresponding distribution function f (xxx, t)

∂ f
∂ t

= LFP f , LFP = − ∂
∂xxx

·AAA(xxx, t)+
∂

∂xxx∂xxx
: DDD(xxx, t) (8.29)

with diffusion tensor DDD = BBB† ·BBB using Ito’s interpretation. The difficulty of solving
the Fokker–Planck equation like any other partial differential equation increases with
increasing number of independent variables. It is therefore advisable to eliminate as
many variables as possible. For an introduction to stochastic modeling, including an
introduction to brownian dynamics (NEBD) computer simulation which rigorously
solves (8.28), see [58,368,369]. A brief introduction to Fokker–Planck and Langevin
equations as well as brownian dynamics, however, can be found in Chap. 11, and
sample codes are availoable in Chap. 12 of this monograph.

8.6 Projection Operator Methods

If the drift and diffusion coefficients do not depend on some variables, the Fourier
transform of the probability density for these variables can then be obtained by an
equation where the variables no longer appear. To be more specific, if the drift and
diffusion coefficients do not depend on x1, ..,xn with N > n being the total num-
ber of variables, making a Fourier transform of p with respect to the first n vari-
ables, by using the Fokker–Planck equation (8.29) and performing partial integra-
tions the following equation for f̂ = f̂ (xn+1, ...,xN) must be solved: ∂ f̂ /∂ t = L̂FP f̂ =
L̂FP(xn+1, ...,xN) with

L̂FP = −i
n

∑
i=1

kiAi −
N

∑
i=n+1

∂Ai

∂xi
−

n

∑
i, j=1

kik jDi j

+2i
n

∑
i=1

N

∑
j=n+1

ki
∂Di j

∂x j
+

N

∑
i, j=n+1

∂ 2Di j

∂xi∂x j
. (8.30)

Generally, (8.30) must be resolved for every kkk. If one is looking only for periodic
solutions in the variables xi (i ≤ n), the wave numbers ki must be integers and the
integral (for the Fourier transform) must be replaced by a sum over these integer
numbers. Furthermore, if one is interested only in some expectation values of the
form 〈exp imxi(t)〉 (for a specific i ≤ n), only the solution of (8.30) with ki = −m
needs to be calculated. A class of Fokker–Planck equations with two variables where
the drift and diffusion coefficients do not depend on one variable and where solutions
are given in terms of hypergeometric functions, see [370] and App. A6 of [369]. If
the decay constants for some variables are much larger than those for other ones, the
‘fast’ variables can then approximately be eliminated. This is achieved by adiabatic
elimination of the fast variables. Starting from the Langevin equation (8.28) for the
slow (≡ x1) and fast (≡ x2) variables, the Fokker–Planck equation for the distribution
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function f (xxx) is rewritten as ∂ f /∂ t = [L1 +L2] f , with – i = 1 (slow) and i = 2
(fast) –

Li =
∂ Ãi(xxx)

∂xi
+

∂ 2

∂x2
i

Dii(xxx), Ãi(xxx) = Ai(xxx)+Bii
∂

∂xi
Bii . (8.31)

In the spirit of the Born-Oppenheimer approximation in quantum mechanics one
first looks for eigenfunctions of the operator L2. Here the variable x1 appears as a
parameter. We assume that for every parameter a stationary solution and discrete
eigenvalues λn and eigenfunctions φn exist (n ≥ 0). These generally depend on the
parameter x1: L2(xxx)φn(xxx) = λn(x1)φn(xxx). For n = 0, λ0 = 0 we have the stationary
solution fstat = φ0(xxx). By expanding the distribution function f into the complete set
φn of the operator L2 f (xxx) = ∑m cm(x1, t)φm(xxx), and inserting this expansion into the
Fokker–Planck equation involving L1,2 one obtains [ ∂

∂ t + λn(x1)]cn = ∑∞
m=0 Ln,mcm,

with Ln,m ≡
∫

φ+
n L1(xxx)φm(xxx)dx2, and the functions φ+ denote the eigenfunctions

of the adjoint operator L†
1. The orthonormalization and completeness relations read∫

φ †
n φmdx2 = δnm and

∫
φ †

n (x1,x2)φn(x1,x′2) = δ (x2 − x′2), respectively. The Ln,m are
operators with respect to the slow variable x1. Because we are interested only in
the time scale large compared to the decay coefficient of the fast variable, we may
neglect the time derivative in the equation with n ≥ 1. Finally, the equation of motion
for the distribution function f (x1, t) = c0(x1, t) of the relevant variable x1 reads

∂ f (x1, t)
∂ t

= L0 f (x1, t), L0 = L0,0 +
∞

∑
n=1

L0,nλn(x1)−1Ln,0 + · · · (8.32)

where the dots denote higher order terms and, in particular,

L0,0 = − ∂
∂x1

∫
Ã1(xxx)φ0(xxx)dx2 +

∂ 2

∂x2
1

∫
Dii(xxx)φ0(xxx)dx2 . (8.33)

To solve (8.32) explicitely for the distribution function f (x1, t) for the slow variables,
the operator L0 should be given analytically. This is the case only if the eigenvalues
and eigenfunctions of L2 are known analytically and if the matrix elements occurring
in (8.32) can be calculated analytically. An application of this procedure is given on
page 192 of [369].

Quite often the elimination of one or more variables is done with the Nakajima-
Zwanzig projector operator formalism [371–374]. This formalism can be alterna-
tively applied, whereby a projection operator P is defined by P f = (

∫
φ †

0 f dx2)φ0,
where φ0 is the (above) stationary solution. In view of the orthogonality rela-
tions given above, P2 = P for a projection operator holds. Because the system
φn,φ †

n is complete, the operator 1−P may be cast in the form Q f ≡ (1−P) f =
∑∞

n=1(
∫

φ †
n f dx2)φn. In the projection operator formalism, the equation of motion is

split up into two coupled equations for P f and (1−P) f , i.e., into

∂
∂ t

f = LFP f = PLFP f +QLFP f , (8.34)

with PLFP f =PLP f +PLQ f , and QLFP f =QLP f +QLQ f . The usual Markov
approximation to the formal solution of this problem consists in neglecting the time
derivative, as used here in order to derive (8.32).
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An appropriate way of systematic coarse-graining is provided by GENERIC [38]
and its statistical foundation based on projection operator techniques for separat-
ing time scales [375]. For Monte Carlo simulations, nonequilibrium ensembles cor-
responding to the deformations of polymer molecules in flows can be introduced
and used in order to determine deformation-dependent energies and entropies [376],
which are the generators of reversible and irreversible time-evolution, (8.1), respec-
tively. For MD simulations, the projection-operator formalism shows that all dy-
namic material information can and actually should be evaluated in a systematic way
from simulations over time spans much shorter than the final relaxation time [377].

8.7 Stress Tensors: Giesekus – Kramers – GENERIC

Within so called GENERIC Canonical Monte Carlo (GCMC) [376] and the ‘reduced
description’ mentioned in Sect. 2.6 the relevant distribution function is approximated
using a reduced set of (slow) variables. These may be particular moments of the
distribution function itself. Using the underlying Fokker–Planck equation from this
representation one can derive equations of change for the slow variables, and some-
times solve the set of equations for the ‘conjugate’ or ‘dual’ variables efficiently.
Within GCMC the distribution function (based on all ‘atomistic’ phase space coordi-
nates abbreviated as zzz) involves unknown Lagrange parameters ΛΛΛ and a ‘phase space
function’ ΠΠΠ(zzz):

f (zzz)ΛΛΛ = feq
1
Z

e−ΛΛΛ :ΠΠΠ , feq ∝ e−βE0 (8.35)

normalized by Z. Here, For the case of the homogeneous Hookean bead-spring model
(Rouse model) with bond energy E0 ≡ H

2 ∑k QQQk ·QQQk we wish to see under which
conditions the three different representations for the stress tensor (Gieskus, Kramers,
GENERIC) are equal to each other, and we want to provide an expression of the
Lagrange parameter in terms of flow parameters. See [378] for a discussion about
material objectivity and thermodynamical consistency of stress tensor expressions.

Let us consider a single (arbitrary) normal mode ΠΠΠ ≡ XXXPXXXP (P ∈ 1, ...,N−1) as
slow variable. The first mode, for example, is given by XXX1 ≡ ∑i(2/N)1/2 sin( iπ

N )QQQi
[58]. The Gieskus expression for the stress tensor is known as

σσσGIE = −1
2

nζ
N−1

∑
i, j=1

Ci, j (κκκ ·
〈
QQQiQQQ j

〉
+
〈
QQQiQQQ j

〉
·κκκT ) (8.36)

with the useful properties ∑i j Ci jQQQiQQQ j = ∑k ckXXXkXXXk, ck = 1/ak and ak =
4sin2(kπ/(2N)) and ∑N−1

k=1 ck = (N2 −1)/6 [4]. The Kramers expression reads [4]

σσσKRA = n
N−1

∑
i

〈QQQiFFFi〉+(N −1)nkBT 1 (8.37)

with FFFi = −dE0/dQQQi, and the GENERIC expression for the same problem (assum-
ing a symmetric stress tensor) reads [38]
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σσσGEN = nkBT (ΛΛΛ ·XXX +XXXT ·ΛΛΛ T )), XXX = 〈ΠΠΠ〉 (8.38)

In the above equations the average is defined via 〈F〉 =
∫ ∫

F fΛΛΛ dzzz where zzz =
{QQQ1,QQQ2, ...,QQQN−1}. Inserting the special form ΠΠΠ into (8.35) we obtain f (zzz)ΛΛΛ =
Z−1 exp{−ΛΛΛ : XXX1XXX1 − βH

2 ∑k XXXk ·XXXk}. and XXX = 〈ΠΠΠ〉 = 1
2 (ΛΛΛ + βH

2 1)−1, or equiv-
alently, an expression of the Lagrange parameter in terms of the averaged normal
mode ΛΛΛ = 1

2 (XXX−1 −βH1). The GENERIC stress is thus rewritten as

σσσGEN = nkBT (1−βH XXX) . (8.39)

By using the identity

〈XXXkXXXk〉 =
1

βH
1+δk,P

(
XXX − 1

βH
1
)

(8.40)

we immediately see, that σσσ KRA = σσσGEN rigorously holds. Concerning the correspon-
dence between Gieskus and GENERIC stresses we arrive at the following condition
for XXX in terms of the flow field: σσσGEN = σσσGIE if and only if

−4λH γγγ
(

N2 −1
6

− cP

)
−2cPλH(βH)(κκκ ·XXX +XXX ·κκκT ) = 1−βH XXX (8.41)

with the time constant of Hookean dumbbell λH = ζ/(4H). In order to apply these
findings, let us consider simple shear flow with dimensionless shear rate Γ = γ̇λH .
For that particular case we obtain the following moment XXX and Lagrange parameter
ΛΛΛ in terms of the shear rate:

XXX =
1

βH

⎛

⎝
1+4cP

(N2−1)
3 Γ 2 N2−1

3 Γ 0
1 0

1

⎞

⎠ , (8.42)

ΛΛΛ = βH

⎛

⎜⎜
⎝

(N2−1)(N2−1−12cP)
2(9−Γ 2(N2−1)(N2−1−12cP)) Γ 2 − 3(N2−1)

2(9−Γ 2(N2−1)(N2−1−12cP)) Γ 0
(N2−1)

2(9−Γ 2(N2−1)(N2−1−12cP)) Γ 2 0

0

⎞

⎟⎟
⎠ . (8.43)

Note that N2 − 1− 12cP < 0 for P = 1, N2 − 1− 12cP > 0 for P = 2,3, both signs
(dependent on N) otherwise. The first mode should always be taken into account
within the set of slow variables. ΛΛΛ is nontrivial and singular. When considering a
single mode P we therefore recover the expected form of the stress tensor and the
exact Rouse viscosity by matching the stresses, but we have disagreement for the
first normal stress. To be more specific,

η = nkBT λH
(N2 −1)

3
= ηRouse ,

Ψ1 = nkBT λ 2
H

4(N2 −1)
3

cP 	= Ψ Rouse
1 . (8.44)
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This example can be generalized to other types of flow and other (more suitable)
choices for the phase space function ΠΠΠ in terms of ‘atomistic coordinates’. Several
examples are discussed in [376]. The goal is to approximate the correct distribution
function in a most efficient way by considering a small number of relevant variables.
These must not necessarily be the normal coordinates we had just chosen for illus-
trative purpose.

8.8 Generalized Canonical Ensemble and Friction Matrix

Let ΠΠΠ(z) denote a yet unspecified n-dimensional list of microscopic observables in
terms of the atomistic phase space coordinates zzz(t) = {rrr j(t), ppp j(t)}. The generalized
canonical ensemble in terms of ΠΠΠ(zzz) is characterized by a distribution function ρxxx(zzz)
with

ρxxx(zzz)/ρ0(zzz) =
1

Z(xxx)
e−λλλ (xxx)·ΠΠΠ (zzz) , (8.45)

which contains an n-dimensional list of Lagrange parameters λλλ . The dot between
λλλ and ΠΠΠ stands for the n-fold contraction between both quantities resulting in a
scalar argument for the exponential. The average xxx ≡ 〈ΠΠΠ〉xxx ≡

∫
ρxxx(zzz)ΠΠΠ(zzz)dzzz de-

pends just on λλλ , and vice versa, motivating the notation λλλ (xxx) and ρxxx used in (8.45).
The prefactor Z(xxx) ≡

∫
exp{−λλλ (xxx) ·ΠΠΠ}dzzz ensures suitable normalization. For con-

venience, we include the ‘equilibrium’ distribution function ρ0(zzz) in (8.45) since the
relevant variables and Lagrange parameters to be discussed in the following han-
dle nonequilibrium situations. To be specific, in Sect. 8.9 the quantity xxx becomes
xxx = (x1,xxx2,x3,xxx4) where x1 = ρ , xxx2 = vvv, and x3 = T stand for the hydrodynamic
field variables mass density, velocity, and temperature, respectively. The quantity xxx4

will denote the additional slow structural nonequilibrium variable. The stationary
ensemble (8.45) determines averages for any phase space function in terms of λλλ . In
practice, these averages can be always obtained by using Monte Carlo methods. The
distribution (8.45) implies a ‘closure relationship’, which couples the moments of
the distribution function, and results in restrictions for the applicability of BEMD
to be discussed in Sect. 8.9.2. Within the generalized canonical ensemble, the en-
tropy S(xxx) ≡ −kB 〈lnρxxx〉xxx is available in terms of the macroscopic observable xxx (or
alternatively λλλ ), most conveniently as

S(xxx) = kB(lnZ(xxx)+λλλ (xxx) · xxx) . (8.46)

The Lagrange parameter thus is interpreted as the variable conjugate to xxx, while
kBλλλ = δS/δxxx.

The GENERIC equation for the time evolution of the macroscopic variable xxx (to
be considered as relevant, and ‘slow’) reads, according to (8.1),

dxxx
dt

= LLL(xxx) · δE(xxx)
δxxx

+MMM(xxx) · δS(xxx)
δxxx

, (8.47)
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where LLL is an antisymmetric linear operator that obeys the Jacobi identity, and MMM
is Onsager/Casimir symmetric and positive-semidefinite. The following degener-
acy conditions LLL · δS(xxx)/δxxx = 0 and MMM · δE(xxx)/δxxx = 0 supplement (8.47), which
contains four ‘building blocks’ LLL,E,MMM,S. The quantities E and S represent energy
and entropy, respectively, as described in more detail elsewhere [38, 379]. See also
App. 8.3.1 for particular representations to be used in the next section. Within the
generalized canonical ensemble we essentially can extract all building blocks in
terms of xxx by varying λλλ for a given atomistic model system through Monte Carlo
simulation. More specifically, energy is obtained via E(xxx) = 〈E0〉xxx (E0 denotes
the atomistic energy function). Entropy S(xxx) has been already expressed through
xxx above. Further, LLL(xxx) = 〈{ΠΠΠ ,ΠΠΠ}0〉xxx, where the classical Poisson bracket reads
{A,B}0 ≡ (∂A/∂ zzz) ·LLL0 · (∂B/∂ zzz) with the symplectic matrix LLL0; it represents clas-
sical Hamilton’s equations for the atomistic system. The matrix MMM, in the stationary
regime, obeys

kBMMM ·λλλ (xxx) = −LLL ·δE/δxxx . (8.48)

A key point to the understanding of the BEMD method described in Sect. 8.9 is the
following. The components of the Lagrange parameter cannot be varied arbitrarily
to obtain the physical realizations of xxx. We have to respect interrelations between its
components. In this work we are interested in determining the Lagrange parameter
for the structural variable (xxx4) for given hydrodynamic variables (ρ,vvv,T ). Dynamical
information is needed to obtain the friction matrix from (8.48) self-consistently. As
discussed in App. 8.3.2, the friction matrix MMM entering the time evolution equation
for the slow variables xxx is obtained via brownian or molecular dynamics simulation
as

MMM =
1

2kBτs
〈
τsΠΠΠ(zzz)
τsΠΠΠ(zzz)〉xxx , (8.49)

with 
τsΠΠΠ(zzz)≡ ΠΠΠ(zzz(τs))−ΠΠΠ(zzz(0)) and a time scale τs that is large compared with
the one characterizing the rapid fluctuations of ΠΠΠ , but small compared with the time
scale on which its average xxx varies.

8.9 Beyond-Equilibrium Molecular Dynamics (BEMD)

Beyond-equilibrium molecular dynamics (BEMD) demonstrates the application of
GENERIC (Sect. 8.3) and the calculation of the friction matrix. The method is based
on – and restricted to – the regime, where a generalized canonical ensemble pro-
vides a sufficiently rigorous description in terms of microscopic expressions for non-
equilibrium variables. Multiplostatted equations of motion (Nosé-Hoover variants of
Hamilton’s classical equations) are employed in Sect. 8.9.1 to maintain this ensem-
ble. BEMD makes use of the generalized canonical ensemble elaborated in Sect. 8.8,
where the connection with the GENERIC equations is clarified. The friction ma-
trix appearing in the dynamical equation is iteratively obtained employing a Green-
Kubo type expression. Since the remaining ‘building blocks’ for the GENERIC equa-
tion are readily accessible via static Monte Carlo simulation (for the application of
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Sect. 8.9 they are available analytically), BEMD provides the desired information to
perform multiscale simulations.

Application: Rarefied Gas

The rarefied gas case considered here is exemplary in the sense that the behavior of
such a simple system is known, and that we can focus on the procedural aspects. It is
atypical in the sense that the pressure tensor is dominated by its kinetic contribution.

Without doubt the nonlinear flow behavior of gases can be considered as well
understood. It was known 70 years ago that a gas can display nonlinear effects [380]
and several authors have discussed the problem since then [381–383]. For a rarefied
gas, experimental data is lacking to check the theories. Nonlinear effects occur at
strain rates large compared with the ones accessible in the laboratory. For analytic
approximate solutions for material functions of the rarefied gas we refer the reader
to [54, 383]. For the present model system BEMD operates in the relevant (New-
tonian) domain. For more complex fluids, nonlinear effects occur at accessible strain
rates, and conventional NEMD may be applied to an appropriately coarse-grained
level of description to investigate non-Newtonian effects. But for complex fluids, the
zero-strain-rate viscosities, which are difficult to access via NEMD, are also of major
importance. Here, BEMD may be used to extend efficiently the simulation window
to lower strain rates. Alternate methods particularly useful at low rates have been
proposed by Ciccotti [384] (evaluating differences between equilibrium and non-
equilibrium trajectories) and Morriss and Evans [385] (employing a transient time
correlation function).

For this simple and exemplary case we are able to obtain λλλ in terms of the
slow nonequilibrium variable as well as LLL · δE/δxxx analytically. ‘Multiplostatted’
equations of motion are employed to perform λλλ -biased nonequilibrium molecular
dynamics simulations in such a way that λλλ (respectively xxx) is iteratively and self-
consistently obtained by evaluating, on the one hand, MMM from (8.49), and, on the
other hand, LLL ·δE/δxxx. The latter can be directly expressed in terms of xxx; the former
is evaluated for given xxx, which allows us to iteratively obtain the correct Lagrange
parameter. Having determined all building blocks in terms of the ‘slow’ variables xxx,
we can also solve (8.47) to study the transient behavior on ‘large’ time scales.

Target Level

Besides using mass density x1 = ρ , velocity field xxx2 = vvv, and temperature x3 = T as
hydrodynamic state variables for the description of (ideal, homogeneous, isotropic)
gases, a coarse target level for an anisotropic, rarefied gas is provided by the struc-
tured version of Grad’s moment method [386], which suggests using the (dimension-
less) kinetic pressure tensor as an additional nonequilibrium variable xxx4 = 〈ΠΠΠ 4〉xxx.
We wish to study a nonequilibrium ensemble for which density, temperature, and
flow field are constant. As discussed in Sect. 8.3.2, all entries in the friction matrix
MMM (except MMM44) vanish and therefore just the Lagrange parameters λλλ 4 needs to be
considered.
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Nonequilibrium Variable for the Rarefied Gas

Consider a macroscopically homogeneous rarefied gas composed of a fixed number
N of particles with equal masses m at constant temperature and volume. The system
at rest is described by a canonical equilibrium ensemble. According to the rules of
statistical physics [387], the kinetic part of the pressure tensor πππkin for a particle
system subjected to a macroscopic flow field vvv(rrr) reads πππkin = pΠΠΠ 4(zzz) with the
dimensionless instantaneous kinetic pressure tensor

ΠΠΠ 4(zzz) ≡
m

kBT
1
N

N

∑
j=1

ccc jccc j , (8.50)

where p = ρkBT/m is the ideal gas pressure, ρ = Nm/V the particle mass density,
ccc j = ppp j/m− vvv(rrr j) denotes the peculiar velocity of particle j, and ppp j its canonical
momentum. Homogeneous steady flows are characterized by a position-independent
transposed velocity gradient κκκ , i.e.,

vvv(rrr) = κκκ · rrr, κκκ = (∇vvv)T . (8.51)

More specifically, we consider shear flows with κi j = γ̇δi1δ j2 and shear rate γ̇ in
the examples below. The additional potential part of the pressure tensor stems from
collisions through the interaction potential between particles. For the present investi-
gation we choose the spherically symmetric two-body Lennard–Jones (LJ) potential,
defined in (4.1). For the pressure tensor of rarefied gases the potential contribution is
of minor interest, i.e., negligible compared to its kinetic counterpart [383]. The po-
tential part dominates in dense fluids [233,360,388]. The interaction potential itself,
however, produces momentum transfer and generates dissipation to be quantified
through the friction matrix MMM.

The isotropic pressure is considered constant, i.e., Tr(ΠΠΠ 4) = 3. We might have
introduced the traceless part of (8.50) rather than using the present definition, (8.50);
the former choice allows us to handle scalar pressure variations, cf. [54], where a
slightly different notation is used.

Implications for Lagrange Parameter and Reversible Motion

For the chosen system and structural variable ΠΠΠ 4, the corresponding Lagrange para-
meter is identified analytically by multiplying ρxxx with ΠΠΠ 4(zzz) and subsequent (stan-
dard Gaussian, cf. Page 14.8) integration over zzz to obtain

xxx4 =
∫

ρxxx ΠΠΠ 4 dzzz
∫

ρxxx dzzz
=

∫
e−λλλ 4:ΠΠΠ 4 d ppp(N) =

N
2

λλλ−1
4 . (8.52)

This is an analytic expression for the Lagrange parameter in terms of the slow vari-
able xxx4 ≡ 〈ΠΠΠ 4〉xxx, and vice versa, λλλ 4 = Nxxx4

−1/2. As discussed in detail, these quan-
tities depend on the remaining components of xxx, in particular on the flow field, and
it is our goal to obtain this relationship using the stationary GENERIC equation.
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The energy E and the operator LLL characterizing the reversible dynamics of a
rarefied gas are collected in the Sect. 8.3.1. Upon inserting E,LLL from (8.13), (8.8)
into the stationary GENERIC equation, (8.48), and by expressing λλλ 4 through xxx4 via
(8.52) we obtain

∑
i

LLL4i ·δE/δxxxi = κκκ · xxx4 + xxx4 ·κκκT − 2
3

xxx4 xxx4 : κκκ . (8.53)

This is an expression for the reversible contribution to the time evolution of the slow
component xxx4 in terms of xxx = (. . . ,vvv, . . . ,xxx4), while κκκ = (∇vvv)T . Evolution equations
for the remaining components can be also deduced from Sect. 8.3.1. For the present
purpose, however, these equations contain irrelevant information.

Stationary GENERIC Equation for the Rarefied Gas

As discussed in Sect. 8.3.2, for the structured version of Grad’s moment method the
quantity MMM44 is the only nonvanishing component of the friction matrix for a rarefied
gas. Upon inserting (8.53) into (8.48) we therefore arrive at the following stationary
GENERIC equation for the structural variable of a rarefied gas:

kBN
2

MMM44 : xxx4
−1 = κκκ · xxx4 + xxx4 ·κκκT − 2

3
xxx4 xxx4 : κκκ . (8.54)

The right hand side (rhs) of (8.54) represents the deterministic transformation behav-
ior of xxx4 due to the flow field, where the shape of the distribution function, (8.45),
has eliminated the appearance of higher moments of ΠΠΠ 4. The rhs coincides with the
change of xxx4 due to a flow field derived by Grad [386]. Close to equilibrium, where
the traceless quantity xxx4 − 111 is small, and xxx4

−1 ≈ 222− xxx4, the rhs of this equation
reduces to the traceless quantity κκκ + κκκT (incompressible flow), and the left hand
side (lhs) becomes proportional to NNN : xxx4

−1 = 2(111− xxx4) with the 4th-rank tensor
NNNi jkl = δikδ jl +δilδ jk − (2/3)δi jδkl .

The friction matrix is estimated from short pieces of the trajectory of duration
τs. The BEMD method uses this value for the friction matrix, at a given value for
xxx, to obtain an updated value for this variable from (8.54) (more generally from
(8.48)). BEMD proceeds with this iterative process until convergence of the value
for xxx and the Lagrange parameter is reached (see also [389] for further details on
how we iteratively determine a consistent nonequilibrium state xxx). For the rarefied
gas, once we obtain xxx4(xxx) (or λλλ 4(xxx)) the effect of flow, density, and temperature on
the macroscopic kinetic contribution to the pressure tensor and the corresponding
material functions are directly evaluated from πππkin = ρkBT xxx4/m, and all building
blocks LLL,E,MMM,S are expressed in terms of xxx = (ρ,κκκ · rrr,T,xxx4).

We remind the reader that (8.54) depends on the choice of nonequilibrium vari-
able. For dense fluids, where the current choice ΠΠΠ 4 is inappropriate, one has to obtain
the analog of (8.54) from (8.48). In [390], where another structural variable has been
used to describe polymer melts, MMM44 has been assumed to be the only nonvanishing
component that couples to xxx4. For the rarefied gas, however, this simplification of the
equation of change is rooted in the structured version of Grad’s moment expansion.
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8.9.1 Multiplostatted Equations

For calculating friction matrices such as MMM44 with

MMM44 =
1

2kBτs
〈
τsΠΠΠ 4(zzz)
τsΠΠΠ 4(zzz)〉xxx (8.55)

by molecular dynamics, we need to generate initial configurations according to some
ensemble characterized by xxx, and we then need to evolve these initial configura-
tions according to Hamilton’s equations of motion. For simulation purposes it is
advantageous to modify the time-evolution equations such that the initial ensemble
remains invariant. The intrinsic inaccuracy associated with time-scale separation is
then shifted from the slow change of the ensemble to a minor modification of the
time-evolution equations.

Following the ideas of Nosé [391] and Hoover [392] maintaining the Lagrange
multiplier in the course of the time-evolution actually means that we need to preserve
a multiplostatted (ms) generalized canonical nonequilibrium ensemble

ρms
xxx (zzz) = ρxxx(zzz) e−βHNose

∝ ρ0(zzz)e−λλλ 4:ΠΠΠ 4 e−βHNose , (8.56)

where ρxxx(zzz) has been inserted from (8.45). Due to our choice for ΠΠΠ 4, which de-
pends on the momenta, the kinetic energy is contained in λλλ 4 : ΠΠΠ 4. More specifically,
Ekin(zzz) = −λλλ 4 : ΠΠΠ 4 with an isotropic Lagrange parameter λλλ 4 = N111/2. For this rea-
son, here ρ0 contains only the potential energy Epot(zzz) due to the interaction potential
rather than the total energy, i.e., ρ0(zzz) = exp{−βEpot}. The term HNose ≡ 1

2 p2
T /MT

contains an additional variable pT representing a reservoir. The temperature explic-
itly enters through β = (kBT )−1 and definition (8.50).

While considering fixed volume and fixed number of particles, the strategy for
obtaining a dynamics consistent with (8.56) is based on introducing canonical vari-
ables ppp′j and scalars qT , pT , where the canonical particle momenta ppp′j are related to
the physical ones, ppp j by ppp j = ppp′j/qT . In order to obtain all time-evolution equations
that constitute the multiplostat we choose as the Hamiltonian

H ′ = qT
(
Epot +HNose +β−1λλλ 4 : ΠΠΠ 4 + f kBT lnqT

)
, (8.57)

with f denoting the number of degrees of freedom, f = 3N. This Hamiltonian is con-
sistent with (8.56). The logarithmic form in qT is crucial because it leads to the expo-
nential in the generalized canonical distribution. From (8.57) we obtain the modified
Hamiltonian equations ṙrr j = dH ′/d ppp′j, ṗpp′j = −dH ′/drrr j, q̇T = dH ′/d pT and ṗT =
−dH ′/dqT . When re-expressing these equations of change in physical variables
(simple chain rule for ṗpp j, mechanical force FFF j ≡ −dφ/drrr j) and after eliminating
qT by making use of its time evolution equation, which reads d lnqT /dt = pT /MT ,
we have

ṙrr j = kBT
∂ΠΠΠ 4 : λλλ 4

∂ ppp j
, (8.58)
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ṗpp j = FFF j −
kBT
m

∂ΠΠΠ 4 : λλλ 4

∂ rrr j
− pT

MT
ppp j , (8.59)

ṗT = ∑
j

(

ppp j · kBT
∂ΠΠΠ 4 : λλλ 4

∂ ppp j

)

− f kBT . (8.60)

In practice, periodic boundary conditions [393] supplement this set of equations
when considering bulk properties. For obtaining (8.64), we require that the value
of H ′ is kept at zero at all times; otherwise a term H ′/qT has to be added to (8.64). In
view of the conservation of H ′ as the generator for the Hamiltonian evolution of the
canonical variables, this assumption seems to require a proper choice of initial condi-
tions. However, with H ′ = 0 we eliminate qT from (8.58)–(8.60) and the initial qT (0)
is uniquely determined from H ′(0) using (8.57). In Nosé’s derivation the term H ′/qT

does not appear since dt = qT dτ and H ′ are defined without the prefactor qT . The pa-
rameter MT (also related to a characteristic response frequency ν = f kBT/MT [394])
describes the inertia of the scale factor pT and must be chosen carefully. Details are
given in [389]. Here we prefer to keep the notation of [54], i.e., use MT (proportional
to the number of degrees of freedom f ) rather than ν (independent of f ).

Multiplostatted Equations for the Rarefied Gas

Specializing to our structural nonequilibrium variable the following derivatives are
readily evaluated using the definition of ΠΠΠ 4 and the relationship between peculiar
velocity and canonical momentum,

kBT
∂ΠΠΠ 4 : λλλ 4

∂ ppp j
=

2λλλ 4

N
· ccc j ,

kBT
∂ΠΠΠ 4 : λλλ 4

∂ rrr j
= −mκκκT · 2λλλ 4

N
· ccc j , (8.61)

when λλλ 4 does not depend on phase space variables. Finally, we eliminate λλλ 4 using
(8.52) to obtain the multiplostatted equations of change (8.58)–(8.60) for the rarefied
gas:

ṙrr j = xxx4
−1· ccc j , (8.62)

ṗpp j = FFF j +κκκT · xxx4
−1· ccc j −

pT

MT
ppp j , (8.63)

ṗT = ∑
j

(
ppp j · xxx4

−1· ccc j
)
− f kBT . (8.64)

This set reduces to Nosé’s equilibrium thermostat for vvv(rrr) = 000→ κκκ = 000, xxx4 = 111,ccc j =
ppp j/m.

Due to the velocity gradient κκκT appearing in (8.63) the time evolution equations
(8.62)–(8.64) offer similarities with the DOLLS [360] equations, whereas it is known
that the SLLOD equations (with κκκ instead of κκκT in (8.63))give an exact description
of shear flow (but not of elongational flow) arbitrarily far from equilibrium. We com-
ment on this similarity in Sect. 8.9.3.
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Multiplostatted Equations for Arbitrary ΠΠΠ 4

For a general application of multiplostatted equations, when neither the kinetic nor
the potential energy are contained in the definition of ΠΠΠ 4, the quantity ρ0 is the
full equilibrium distribution function. The equations (8.58)–(8.60) remain valid upon
adding the contributions (8.61) with 2λλλ 4/N = 1 resulting from the conventional ki-
netic energy term.

8.9.2 Applicability of BEMD

In order to appreciate the set of multiplostatted equations and the iteration concept
(and before going to apply them to a rarefied gas) some words of caution are in or-
der. One can ask under which conditions the multiplostatted equations (8.62)–(8.64)
can be considered as small modifications of the original equations of motion. The
term involving the scale factor pT can be kept small by choosing the parameter MT

sufficiently large. It has to be chosen such that pT changes on the time scale of the
slowest relevant variable xxx4, thus allowing one to explore the physically achievable
values of energy on that time scale. Equation (8.63) requires velocity gradients to
be small compared to typical momentum relaxation rates, while (8.62) requires
the average flow velocity to be small compared to the individual particle velocities.
We hence use a coordinate system in which the initial total momentum vanishes, and
the origin coincides with the initial center of mass of the particles. This particular
frame of reference is crucial and also convenient (see also [395] and Sect. 8.9.3).
For the flow terms in the multiplostat to be small we obtain from (8.62) the further
condition that the simulated system can be taken sufficiently small so that the varia-
tions of the flow velocity across the system are small compared to thermal velocities.
Finally, the smallness of the terms maintaining a constant Lagrange multiplier needs
to be checked for every particular choice.

These general restrictions propagate to the case of a rarefied gas as follows. Here
and in the remaining section we use dimensionless Lennard–Jones units (in partic-
ular, m = 1,kB = 1). The average velocity v = |vvv| for particles in a rarefied gas at
rest is 〈v〉 =

√
8kBT/π . The mean free path λ is defined as λ = 〈v〉τ . The so-called

Boltzmann viscosity (equal to the zero shear-rate shear viscosity) takes the value
ηB ≡ pτ . The strength of the friction matrix becomes Meq ∝ (ρτ)−1, where the co-
efficient of proportionality is very well approximated by unity, as confirmed by the
present simulations. In equilibrium, MMM44 = MeqNNN with NNN already defined in Sect. 8.9.
Along with the above considerations we choose a box size L = αλ with a para-
meter α � 1 to be discussed below. For variations of the flow velocity across the
system to be small compared to thermal velocities requires Lγ̇ � 〈v〉, or equiva-
lently, γ̇ � 〈v〉/L. Since α � 1, the latter inequality is actually not restrictive since
〈v〉/L < τ−1 then poses the stronger restriction for the case of an Lennard–Jones
gas. The Maxwell relaxation time τ is related to a Chapman-Cowling collision in-
tegral [389] and becomes, for the case of an Lennard–Jones gas, τ ≈ (6ρ

√
T )−1,

which equals (σρ 〈v〉)−1 with an effective particle diameter d = 0.92 (for the case of
a Lennard–Jones gas), and ‘cross section’ σ ≡

√
2πd2.
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BEMD of a rarefied Lennard–Jones gas subjected to period boundary conditions
and weak shear flow had been fully implemented in [389], where all simulation de-
tails are explicitely given.

Once we measure MMM44 defined in (8.49) at given xxx, we determine a corrected
‘Lagrange parameter’ xxx4 from (8.54), using the current value for xxx4 on its rhs.
The friction matrix MMM44 is traceless in its first and last two components, thus
MMM44 : xxx4

−1 = MMM44 : (xxx4
−1 + p0111) for arbitrary p0, and p0 is uniquely determined

from the analytically solvable nonlinear equation Tr(xxx4) = 3. The described iterative
procedure is an integral part of the BEMD method. A fix point and stationary value
for xxx4 is only reached if xxx4 and MMM44 correspond to each other. During the course of
this process the Lagrange parameter is updated in time intervals larger than τs needed
to determine the updated MMM44. As soon as the physical regime is reached, where the
Lagrange parameter remains unaltered, also the mean ΠΠΠ 4 agrees with xxx4.

BEMD – NEMD Switch

We presented the BEMD simulation strategy, which demonstrates the application of
the GENERIC formalism and the calculation of the friction matrix, and applied it to
a rarefied Lennard–Jones gas subjected to shear flow. Our choice of nonequilibrium
variables, (8.50), is inspired by Grad’s moment method for gases. Multiplostatted
equations of motion (8.58)–(8.60), (8.62)–(8.64) – the three former equations sim-
plify to the latter ones for the rarefied gas – were employed to maintain the gen-
eralized canonical ensemble, (8.45), (8.56). The friction matrix has been iteratively
obtained through (8.48), (8.54) employing the Green–Kubo type expression (8.49),
(8.55). BEMD supersedes the conventional (‘reference’) NEMD simulations con-
cerning efficiency in the weak flow regime, i.e., whenever they are applicable. The
range of applicability was discussed in Sect. 8.9.2. We made sure that same con-
clusions hold for slight variations of the reference algorithm, cf. [383]. For larger
shear rates, essentially in the non-Newtonian regime of the rarefied gas, conven-
tional NEMD seems to be a more suitable approach. For our current purposes, the
rescaling procedure suffices, particularly for the moderate flow rates under study,
where most thermostats (including Nosé-Hoover) give ‘identical’ results [395]. An
upper limit for the NEMD method using the ‘Gaussian’ thermostat [389] has been
discussed in [383]. Profile unbiased thermostats are commonly used at dimensionless
shear rates Γ > 5. From the present investigation we conclude that an efficient way
to obtain the zero shear-rate viscosity may be to run a simulation at a very low rate in
order to get an estimate for the relaxation time τ to be chosen as the initial value for
τinit. Then, simulations can be carried out in the Newtonian regime at dimensionless
shear rate Γ = γ̇τinit in the range 0.01 < Γ < 0.1, which constitutes a regime where
the presented multiplostatted equations are most efficient. Subsequently, NEMD can
be used to calculate material functions at shear rates Γ > 0.1. This procedure re-
quires an amount of computing time that is at least an order of magnitude smaller
than the one required for a complete NEMD run.

Alternatively, if an estimate for the relaxation time corresponding to the nonequi-
librium variable is not available, one can proceed from large to smaller field strengths
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(rates) using NEMD and extracting the microscopic material quantity (pressure ten-
sor πππ) as a time average until error bars become significantly large but smaller than,
say, 5% at a certain flow (external field) strength, cf. Fig. 8.1 for a schematic draw-
ing. Next, one has to run NEMD and BEMD in parallel and switch to BEMD as soon
as both results for πππ coincide at a certain ‘critical’ rate. Below this rate, BEMD can
be safely used to complete the flow curve. Here, we do not need an estimate for the
switch rate or critical rate using arguments as those presented in Sect. 8.9.2.

The closer the generalized canonical distribution function represents the correct
nonequilibrium distribution function, the more efficient BEMD becomes. The new
method can be more usefully applied to more complex, and dense fluids. The gener-
alized canonical distribution used here has been shown in [396] to provide the most
accurate closure approximation for the theory of rodlike liquid crystalline polymers
(where this distribution is termed ‘Bingham distribution’, and where the nonequi-
librium variable is chosen as ΠΠΠ 4 = uuuuuu with rod axis uuu). The success of BEMD is
intimately related to the suitable choice of relevant variables. For bulk polymers in
the molten state such a relevant variable may be the end-to-end distance, the first
normal mode coordinate or the tensor of gyration [390], as suggested by experience
with theoretical approaches.

8.9.3 DOLLS/SLLOD Analogy with Multiplostatted Equations

Due to the velocity gradient κκκT appearing in (8.63) the time evolution equations
(8.62)–(8.64) offer similarities with the DOLLS [360] equations, whereas it is known
that the SLLOD equations – with κκκ instead of κκκT in (8.63) – give an exact de-
scription of shear flow arbitrarily far from equilibrium. SLLOD can be also seen
as rheological theory [48]. Following the work of Edwards and Dressler [397] the
DOLLS algorithm is not ‘completely Hamiltonian’ because the connection with the
underlying Lagrangian problem, via a Legendre transformation, has been severed.
Accordingly, the Hamiltonian equations should appropriately be expressed through
a non-canonical Poisson bracket. In doing so, Edwards and Dressler and earlier
Tuckerman et al. [398] obtain GSLLOD equations (generalized SLLOD, modified
by a term which appears for flows for which κκκ2 does not vanish). Following their
concept one would supplement (8.63) by a term −mκκκ2 · rrr j, and replace the exist-
ing κκκT by κκκ . Concerning the acceleration r̈rr for all the mentioned models, we obtain
(m = 1, no interactions, FFF = 000)

r̈rr j = α1(κκκT−κκκ) · ṙrr j +α2(κκκT −κκκ) ·κκκ · rrr j +α3 κκκ2· rrr j − . . . , (8.65)

where the coefficients are listed in Table 8.1. If the macroscopic flow profile κκκ
should not influence the inertia of particles through these algorithms, GSLLOD
(with ∀iαi = 0) offers the appropriate structure. Independent of the type of algo-
rithm, flow is driven by additional Lees-Edwards boundary [393] conditions. From
equation (8.65) it is obvious that for the case of shear flows (κκκ2 = 000), SLLOD equals
GSLLOD while for elongational flows (κκκT = κκκ) SLLOD equals DOLLS. Actually,
by solving (8.65) for initial conditions rrr(0) = (0,y0 	= 0,0) and ṙ(0) = ακκκ · rrr(0)
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Table 8.1. Coefficients appearing in the acceleration equation (8.65) for the coordinates for
diverse models. Here BEMD stands for the isotropic (xxx4 = 111) version of the (8.62)–(8.63)

Coefficient Relevance BEMD DOLLS SLLOD GSLLOD

α1 shear 1 1 0 0
α2 shear 0 1 0 0
α3 elongation 0 1 1 0

(NEMD)

BEMDm
at

er
ia

l f
u

n
ct

io
n

field strength

switch

Fig. 8.1. Suggested switch at a critical field strength (flow rate) from NEMD to BEMD, or
vice versa, as described in Sect. 8.9.2. For the simple model system considered here, NEMD
can be directly employed to obtain material functions from atomistic configurations. More
generally, simulations must be performed on several levels of description invoking the choice
of relevant variables on each separate level. The error for the material function grows with
decreasing field strength because it actually represents a coefficient of proportionality for an
inverse deviation from equilibrium (viscosity rather than a component of the pressure tensor)

(α = 0,1), we see immediately that SLLOD without appropriate boundary condi-
tions is the only version which does not produce ‘aphysical’ trajectories for both
types of flow. For this simple initial condition we consider a result as aphysical if the
y component changes under shear flow, or if it changes sign or keeps it initial value
under elongational flow in the absence of forces. The method of rescaling peculiar
velocities used here for performing NEMD is aphysical in the above sense, since a
one particle analysis is impossible. Considering boundary conditions [393,395,399],
the picture and conclusions are slightly different. Boundary conditions (such as Lees-
Edwards) transmit forces which, if they are stabilizing a (homogeneous) flow situ-
ation (ṙ = κκκ · rrr) compatible with these boundary conditions, effectively increase α3

in (8.65) by one. That is why, in our opinion, the GSLLOD algorithm rather than
SLLOD should be appropriate for elongational flows if such boundary conditions
are used.

Most importantly, we remind the reader that for the method outlined in this ar-
ticle, we do not need to produce physical trajectories at small and large (shear)
rates. Instead, we need to preserve the generalized canonical distribution (8.45)
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(physical or aphysical), which is the case for our equations (8.62)–(8.63). Our goals
are absolutely different from those of DOLLS/SLLOD approaches. Their ambi-
tion is to impose significant flow, and this comes with a significant modification of
Hamilton’s equations of motion. We want to achieve generalized canonical distrib-
utions with a minor modification of Hamilton’s equations of motion. (Minor means
that the modification should introduce errors of the same order of magnitude as those
coming with the assumption of a time-scale separation.) For a rarefied gas faced
with the Grad level, this limits us to small flow rates, cf. Sect. 8.9.2. Concerning
the Hamiltonian structure, our (8.62)–(8.64) come from a canonical symplectic for-
mulation (with an extra Nosé-Hoover pair of variables which one needs to go from
microcanonical in the bigger Hamiltonian system to canonical in the system of ac-
tual interest). This is the strongest possible structure for formulating Hamiltonian
dynamics and should include a variational principle and a Lagrangian formulation.

8.10 Examples for Coarse-Graining

8.10.1 From Connected to Primitive Path

A procedure for coarse-graining polymer molecules from the atomistic level of de-
scription (and also FENE chain level) to the reptation level for entangled polymers
had been presented in [140]. While this method is based on collapsing a certain
number of atoms or monomers into a large unit at their center of mass, the smooth
and uniform dependence of the coarse-grained chain on positions of all atoms pro-
posed in [400] is useful if one is interested in a two-way coupling of two levels
of description as pointed out in [401]. We just summarize how to explicitely ap-
ply coarse-graining from the latter procedure, which is illustrated in Fig. 8.2. The
transformation, parametrized by a single parameter, Pξ : {xxx0

i}→ {xxxi} maps a set of
i = 1, ..,N atomistic (or FENE chain) coordinates of a linear chain to a new set with
an equal number of coordinates, called coarse-grained coordinates xxxi, which define
the coarse-grained chain or ‘primitive path’ {xxxi} of the atomistic chain. In order to
motivate the mapping, we require, that P0 =Id, i.e., for ξ = 0 all information of the
atomistic chains is conserved for the coarse-grained chain. The opposite limit reflects
a complete loss of information about the atomistic structure, i.e, the projection in the
limit ξ → ∞ gives give a straight line (or dot) for arbitrary atomistic configurations.
The recommended mapping results from minmization of the energy

E ∝
1
2

N

∑
i=1

(xxxi − xxx0
i)2 +

ξ
2

N−1

∑
i=1

(xxxi+1 − xxxi)2 , (8.66)

for a system of two types of Hookean springs. The first type connects adjacent beads
within the primitive chain, the second type connects the beads of the primitive chain
with the atomistic beads, and ξ is the ratio between spring coefficients. The mapping
from atomistic xxxo to coarse-grained coordinates xxx reads, with the N ×N tri-diagonal
matrix P−1 which can be inverted with order N effort (see Sect. 12.7.1):
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Fig. 8.2. Miscroscopic chain (dark beads) and its primitive path (light beads, tangential cylin-
der indicated). The latter is obtained by the mapping Pξ via (8.67) for a certain ratio of spring
coefficients ξ

xxxi =
N

∑
j=1

Pi j · xxx0
j, P−1 =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1+ξ −ξ 0 · · · · · · 0

−ξ 1+2ξ −ξ 0
. . .

...

0 −ξ 1+2ξ
. . .

. . .
...

...
. . .

. . .
. . . −ξ 0

...
. . . 0 −ξ 1+2ξ −ξ

0 · · · · · · 0 −ξ 1+ξ

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (8.67)

for all i = 1...N. iiCoarse-graining!linear polymer
The discrete coarse-graining had been recently analyzed in [401] for wormlike

‘atomistic’ chains characterized by their squared end-to-end vector
〈
RRR(0)

2
〉

and their
tube diameter dT (i.e., quantities usually tabulated, cf. Sect. 4.5 and Table 4.5). One
of the important result of [401] states, that the correct parameter ξ is determined by
these two characteristics via

1

ξ 1/2
∝

〈
RRR(0)

2
〉

N −1
1

d2
T

, for ξ 1/2 � N , (8.68)



136 8 Connection between Different Levels of Description

Fig. 8.3. Input configuration (2D) including obstacles (white circles and lines) together with
the constructed shortest multiple disconnected path (SP) (darker lines, less kinks than original
chain). Simulation code available in [402]

Fig. 8.4. Original chains (left) and SP (right). Computation done within roughly 1 second for
such a system (polymer melt, 10 chains à 500 beads). Simulation code available in [402]

with a prefactor of order unity. In terms of the quantities introduced in Sect. 4.5 this
relationship is rewritten as ξ ∝ N2

e , for N � Ne with the characteristic entanglement
length Ne.

8.10.2 From Disconnected to Primitive Path

Rubinstein and Helfand, and later Everaers et al. introduced a concept to extract
primitive paths for dense polymeric melts made of linear chains (a multiple discon-
nected multibead ‘path’), where each primitive path is defined as a path connecting
the (space-fixed) ends of a polymer under the constraint of non-interpenetration (ex-
cluded volume) between primitive paths of different chains, such that the multiple
disconnected path fulfills a minimization criterion. In [402] we presented an algo-
rithm which returns a shortest path (SP) and related number of entanglements for a
given configuration of a polymeric system in 2 or 3 dimensions, cf. Figs. 8.3, 8.4. Our
algorithm uses geometrical operations and provides a – model independent – efficient



8.10 Examples for Coarse-Graining 137

approximate solution to this challenging problem. Primitive paths are treated as ‘in-
finitely’ thin (we further allow for finite thickness to model excluded volume), and
tensionless lines rather than multibead chains, excluded volume is taken into account
without a force law. This implementation allows to construct a shortest multiple dis-
connected path (SP) for 2D systems (polymeric chain within spherical obstacles)
and an optimal SP for 3D systems (collection of polymeric chains). The number of
entanglements is then simply obtained from the SP as either the number of interior
kinks (Zkinks), or from the average length of a line segment (Zcoil). Further, infor-
mation about structure and potentially also the dynamics of entanglements is imme-
diately available from the SP. While our algorithm runs to minimize the Euclidean
path length, previous implementations carefully [403,404] minimized bond energies,
which of course in some cases, must lead to quantitative different results. But still,
both approaches tend to produce very comparable path mesh characteristics.

With linear, unanchored, polymers a concept of ‘topological equivalence’ adapted
from knot theory is useless because all paths are topologically equivalent. One can
always disentangle paths by pulling one path around the end of the other (or itself).
Fortunately, in the limit of large chain lengths N there are several schemes which
will eliminate these unlikely distortion processes and create a meaningful definition
of topological equivalence. Perhaps the easiest expedience is to artificially make the
molecule cyclic by drawing a straight line between the two ends of each polymer. It
is evident that the total length of these lines is less than the length of the set of prim-
itive paths, so as N → ∞ the extra lines contribute negligibly to the entanglement
net. In our approach, we obtain a shortest path which is independent of the sequence
chain of displacements in the limit of infinitely small, impractical, displacements (re-
quiring infinite time) during the shortening process. The solution must be regarded
as approximate. The shortening process, where the SP length is strictly decreasing,
prevents disentangling of chains by the above-mentioned pull-around.

Next, we shortly describe the algorithm and apply the method to study the ‘con-
centration’ dependence of the degree of entanglement in phantom chain systems.
As for binary interaction particle dynamics methods, where the driving forces on all
beads can be calculated by a simple double loop over particles (‘N2’ type implemen-
tation, see Sect. 12.4.1 for a simple example), and research focuses on the efficient
calculation of forces, we describe here, how to build an ‘N2’ version of our algo-
rithm, which is easy to implement. All details about the efficient code are given in
the source code attached to [402]. The main procedure acts on a pair of arbitrarily se-
lected, but adjacent, segments (the ‘in-subpath’) of the current multiple disconnected
path, and returns one or more new (connected) segments replacing the two original
ones (the ‘out-subpath’), cf. Fig. 8.5. Selected pairs of segments are always assigned
to a certain original chain. The out-subpath must have the following properties: (i)
The coordinates of the limiting nodes of in- and out-subpaths coincide, (ii) its con-
tour length is less than or equal compared with the one of the in-subpath, (ii) The
in-subpath can be continuously transformed into the out-subpath without touching
any existing object (points in 2D, paths of all chains in 3D – where all means all
except the subpath to which the in-path belongs as long as we do not wish to count
self-entanglements), (iv) the length of each individual segment of the out-path is less
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than one quarter of the minimum box length (a method to avoid any complications
with periodic boundary conditions).

This procedure alters the shape and number of segments of the current path and
returns an updated path which re-enters the procedure. All operations have to take
care about the periodicity of the simulation cell. Our implementation of this proce-
dure uses a small positive number (a parameter) as the minimum allowed distance
between any two points on segments, rather than recording orientations and connec-
tivity when two segments almost touch each other. Further, single segment vectors
are split into two identical segment vectors in order to fulfill (iv). The above proce-
dure is called iteratively until the overall contour length of the multiple connected
path does not decrease anymore for any choice of entering pair, and does not de-
crease upon choosing a different ordering of entering pairs. The final path is the SP.
Depending on the actual implementation of this procedure, the conformation of the
SP is not completely insensitive to the order we select pairs. The number of entangle-
ments and mean mesh size of the entangled network, however, is quite insensitive to
the ordering. The procedure can be used in a Monte-Carlo type fashion, and moves
can be rejected according to user-defined criteria, as long as they do not prevent
selected pairs from further ‘shrinking’.

We ensure property ii) by calculating, for the given pair of segments, all obstacles
located in, and all points on lines crossing, the secant area of the pair. To this end we
make use of intercept point formulas (point+area and line-area). Once we have a set
(say S) of intersecting coordinates, we need to decide which single member of S is
relevant for the construction of new segments. If the size of S is zero, the out-path
will be a straight line between the fixed ends of the pair. If the size of S is unity,
the node between the two segments is moved close to the intercept point, along the
straight line connecting intercept point and node. If the size of S is larger than unity,
we choose from S the point (with coordinates C) which offers the smallest angle
between lines A-B and A-C, where A-B denotes the ‘first’ segment (of the given
pair), B the centered node, and A a fixed node at one of the ends of the pair. This
point is then the only remaining member of S, and we proceed as if the size of S was
unity. Any of the operations reduces the overall contour length of the subpath and
keeps it possibly unchanged only if the node is located close to one or more intercept
points. This does not imply, that there is no overall movement anymore. The intersect
points themselves move according to the above iterative procedure.

In order to count the number of kinks, artificial segments, just introduced to the
data structure to ensure (iv) (relevant for ‘small’ systems) are removed at the final
stage.

While in Sect. 4.4 the critical molecular weight had been measured, here we
thus construct a SP and extract the entanglement weight Ne (number of monomers
between entanglement points, obtained from the segment lengths of the SP assuming
equidistant separations of monomers) and the number of entanglements Z for a chain,

Z ≡ N
Ne

− N
N −1

. (8.69)
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The correction term N/(N − 1) is needed to correctly cover the limit of rods, for
which we wish to have Z = 0 and Ne = N −1. Equation (8.69) usually does not hold
if quantities Ne, Z are replaced by their averages over chains. Following [403], Ne is
defined from the primitive paths (SP) as the ratio Ne,coil ≡ d/bpp, with d ≡ R2/L, and
bpp ≡ L/(N −1), hence,

Zcoil ≡
(

N
N −1

)(
L2

R2 −1

)
, (8.70)

where L denotes the mean contour length, and R2 the mean squared end-to-end dis-
tance of a primitive path with N beads, tube diameter d, further b2 = dbpp, and
R2

ee = d2Zcoil , or equivalently Ne = d2(N −1)/R2
ee. For rods, Zcoil = 0.

Since R and the number of beads N are fixed during the construction of primitive
paths, the number of entanglements Z per chain and the entanglement molecular
weight is determined by the mean contour length L of the primitive path, when (8.70)
is used as the definition for Z. This definition prevents defining and extracting kinks
or step lengths of primitive paths and assumes that the primitive path is a Gaussian
coil with step length bpp. Alternatively, we extract Z from the primitive path as the
average number of interior kinks,

Zkinks ≡
#kinks
#chains

. (8.71)

For rods, Zkinks = 0. As we will see, both definitions for Z yield very similar values
(in an unstrained, equilibrium state) upon defining a kink as a node representing the
primitive path (as the present code constructs it), where we do not count nodes which
are closer together (in terms of contour length) than twice the line thickness. These
points have to be discarded since a ‘sharp corner’ of the line enclosing a small angle
involves more than a single point on the primitive path.

In order to test the output and scaling behaviors, we present in Fig. 8.6 results ob-
tained for (in total roughly 1500) monodisperse systems made of 100 linear, random
phantom chains with N = 20, 40, 60, 80, 100, 150, 200, 200, 250, 300, 500, 1000
beads, bond lengths b0 = 0.5, 0.6, ..,1.3, linethicknesses 0.05,0.06, ..,0.13× 10−5,
contained in a cubic simulation cell at bead number densities n = 0.050, 0.075, 0.10,
0.15, 0.20, 0.30, ..,1.30. For these flexible chains, b = b0. Here, the input configura-
tions are uncorrrelated, and linethickness is chosen very small (primitive paths are,
of course, still uncrossable), excluded volume is therefore absent in the generation
process, and very small (in fact, it is squared linethickness times length of the SP
times π) during the analysis. A master curve for all data (Fig. 8.6) for the dimension-
less tube diameter d/(b

√
N) =

√
Ne/N. We have

d = (b
√

N) f (x), with x ≡ np(b
√

N)3N(γ−1/2) = (nb3)Nγ . (8.72)

As outlined above, we have two methods for extracting the tube diameter, or Ne,
denoted as Ne,coil and Ne,kinks. Analyzing the data, cf. Fig. 8.7, we find the same,
nonzero, exponent γ = 0.82 ± 0.04 for both methods, i.e., x = (nb3)N0.82. If we
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Fig. 8.5. Basic moves during generation of the SP changing the number and contour length
of edges. Example A shows two neighboring line segments in a plane with three different
numbers of obstacles (compare rows 1-3). These obstacles are 3D line obstacles crossing the
area, or 2D point obstacles). Configurations are shown before (left) and after (right) the basic
operation which eventually alters the number of line segments, while reducing the overall
contour length of the line. Example B shows the case where, due to numerical precision,
artificial, short line segments are introduced to properly take into account uncrossability of
chains. These artifical segments do not influence the contour length, and thus leave Zcoil,
(8.70), unaltered, and are ignored when counting Z via the number of segments, cf. (8.71)

regard x as the relevant scaling variable, we can identify a scaling exponent ν ′ in
x ∝ (nb3)N3ν ′−1 [405] as ν ′ = 0.610± 0.015. The classical scaling exponent ap-
pearing in the radius of gyration R ∝ Nν is ν = 1/2 for our artificial phantom chain
system. In this case both exponents differ since concentration effects solely enter
the tube diameter, mesh size, or variable x, but not the statistics of random paths.
We therefore cannot adapt scaling theory, cf. [405], for physical, semidilute poly-
mer solutions and melts under athermal or theta solvent conditions. While ν = 1/2
corresponds to theta solvents, ν = 0.588 is expected for athermal solvents obeying
self-avoiding walk statistics.

Specifically, for x ≥ 17 (kinks) and x ≥ 30 (coils), we have f (x) ∝ x−0.60±0.02 ≈
x−1/(2γ) for both quantities, which reflects the fact that d becomes independent of
chain length. For x smaller than these thresholds, f = 1, such that Ne = N − 1
and Z = 0 below the crossover, in agreement with our definitions. From the master
plot, we obtain, for infinitely long chains, the prefactors: Ne = d2/b2 ∝ (nb3)−1/γ ,
more precisely, Ne = 14(nb3)−1.22 (kinks) and Ne = 50(nb3)−1.22 (coils). Different
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Fig. 8.6. Master plot for roughly 1500 configurations for different random path systems char-
acterized by number of steps N −1, step lengths b0 = b, and step number densities n. Shown
is the dimensionless tube diameter d/(b

√
N) vs. the dimensionless density np(b

√
N)3Nγ−1/2,

with np = n/N. A value γ = 0.82± 0.04, determined via Fig. 8.7, is needed to shift all data
onto a single ‘line’. The SP is completely unentangled, if all primitive paths are straight lines
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Fig. 8.7. Standard deviation vs. unknown exponent γ for phantom chain Ne data (collected
in bins vs. dimensionless length scale x = (nb3)Nγ ). The minimum standard deviation cor-
responds to an exponent γ for the best representation in a master plot, cf. Fig. 8.6. Adapted
from [402]
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prefactors arise for the reason that the primitive path is not a random path with con-
stant step length. The average number of kinks (Z) cannot be obtained from Ne via
the formula (8.69). Assume the distribution of number of kinks on chains with con-
stant number of beads N is constant, then we have 〈Z〉 = N/2 and 〈Ne〉〈Z〉/N ≈
(1/2) ln(1 + N) which is much different from unity. In contrary, if the distribution
is peaked around a certain Z value, (8.69) holds also if we replace values for single
chains by system averages.

Using the above result beyond the dimensionless crossover density, i.e., for x >
100, we find

d ∝
1

b0.83n0.61 ≈ 1

(nb3−2γ)
1
2γ

, (8.73)

with a prefactor 3.7 (kinks) and 6.0 (coils) for our flexible chains (where Ne stands
for a number of Kuhn’s segments), and we do not observe a dependence on N. The
exponents have been determined with an error of about 5%.

Let us summarize the findings of the present sample investigation for a system
of random chains. First of all, we observed that d and Ne are independent of N. With
the general representation d = (b

√
N) f (x), the dimensionless quantity x = (nb3)Nγ

involving an exponent γ , and the observed power-law behavior for f (x) at large x,
we immediately arrive at f (x) ∝ x−1/(2γ), Ne ∝ (nb3)−1/γ , and d ∝ n−1/(2γ)b1−3/(2γ).
We found γ = 0.82±0.04. The observed scaling implies that only the exponent ν ′ =
(1+γ)/3 matters. Its numerical value is not too far from 0.588, the value expected for
athermal solutions, and compatible with the Flory exponent 0.6. In this section, the
construction of the SP effectively introduces excluded volume interactions between
the chains, provided the density is not too small. So one may expect excluded volume
behavior on the scale of a blob (of diameter d) and random-walk behavior on larger
scales (by construction). To fully compare with the treatment presented in [405],
however, excluded volume chains (with R ∝ Nν and ν = ν ′) rather than phantom
chains have to be investigated at a slightly larger computational cost.
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Equilibrium Statistics: Monte Carlo Methods

Monte Carlo methods use random numbers, or ‘random’ sequences, to sample
from a known shape of a distribution, or to extract distribution by other means. and,
in the context of this book, to (i) generate representative equilibrated samples prior
being subjected to external fields, or (ii) evaluate high-dimensional integrals. Recipes
for both topics, and some more general methods, are summarized in this chapter. It
is important to realize, that Monte Carlo should be as artificial as possible to be ef-
ficient and elegant. Advanced Monte Carlo ‘moves’, required to optimize the speed
of algorithms for a particular problem at hand, are outside the scope of this brief in-
troduction. One particular modern example is the wavelet-accelerated MC sampling
of polymer chains [406].

In physics, Monte Carlo methods are commonly used to treat the equilibrium
statistics of simple and complex systems. Since the study of systems far from equi-
librium requires full knowledge about equilibrium properties, and since we did not
spent much space to describe equilibrium properties of the nonequilibrium systems
discussed so far, this section offers a background on how to calculate equilibrium
statistics, phase behavior of Hamiltonian systems. The treatment is kept sufficiently
general in order to cover Monte Carlo methods as solvers for high-dimensional in-
tegration. High-dimensional integrals occur frequently in a huge number of diverse
applications and areas including financial mathematics and data recognition.

According to classical statistical mechanics expectation values of observables
A(xxx), where xxx is a phase space coordinate of the system, can be computed in the
canonical ensemble

〈A〉 =
∫

A(xxx) p(xxx)dxxx

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 145–153 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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p(xxx) =
1

Zβ
e−βH(xxx) , (9.1)

where H(xxx) denotes the Hamilton function of the system, Zβ the partition function,
β = (kBT )−1 the inverse absolute temperature and kB Boltzmann’s constant. The
partition function

Zβ =
∫

e−βH(xxx) dxxx (9.2)

ensures proper normalization 〈1〉 = 1 and yields, e.g., the free energy F(β ) =
−kBT lnZβ . The main idea of the Monte Carlo method is to treat this problem as
a problem for numerical integration, where, in view of the usually high dimension of
the integral (dimension is proportional to the degrees of freedom ∝ N with the num-
ber of particles N for a many-particle system), an equidistant or regular grid in phase
space cannot be used to compute the integral (cf. Table 9.1), but grid coordinates xxxi

have to be statistically selected, to obtain

〈A〉 =
1
M

M

∑
i=1

A(xxxi) p(xxxi) (9.3)

in the limit M → ∞. Since the distribution function usually varies over several orders
of magnitude – H(xxx) is an extensive variable, H(xxx) ∝ N –, a regular phase space grid
is often inefficient.

Table 9.1. Convergence behaviors for N function evaluations in d dimensions

Method Scaling Behavior

Trapezoidal N−2/d regular grid in coordinate space
Simpson N−4/d regular grid in coordinate space
Standard pseudorandom Monte Carlo N−1/2 (independent of d)
Quasi Monte Carlo N−1 logD N (for some D, realized for N > ed)

9.1 Expectation Values, Metropolis Monte Carlo

The Metropolis algorithm aims to calculate 〈A〉 without the need to calculate Zβ . It
is based on the idea to prefer phase space coordinates located in the relevant part of
the phase space, which depends on temperature and further independent thermody-
namic variables: ‘importance sampling’. This is achieved by recursively creating a
Markov chain (‘one-step memory’) of states xxxi: xxxi → xxxi+1 → xxxi+2 → . . . using appro-
priate transition probabilities w(xxx → xxx′) between states xxx and xxx′. These probabilities
must be chosen such that after a ‘large’ number of steps the states xxx are distributed
according to the given probability distribution p(xxx). It is achieved, for example, by
fulfilling the so called condition of detailed balance
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p(xxx)w(xxx → xxx′) = p(xxx′)w(xxx′ → xxx) , (9.4)

where it is important to realize that Zβ effectively drops out. A particular solution to
(9.4) is the Metropolis scheme (see Sect. 12.3.2 for the implementation)

w(xxx → xxx′) = min(1,e−β
H), 
H ≡ H(xxx′)−H(xxx) . (9.5)

For M → ∞ the phase space coordinates xxxi obtained using a jump probability fulfill-
ing (9.4) are distributed according to p(xxx), and the expectation value 〈A〉 is evaluated
as arithmetic average 〈A〉 = 1

M ∑A(xxxi). This approach usually does not yield infor-
mation about the partition function Z or free energy F , even though the partition
function can be expressed itself as an expectation value Zβ = 1/

〈
eβH

〉
, because, for

the evaluation of
〈
eβH

〉
states with high energy H are relevant, but rarely visited.

On the other hand, rare visits of high energy states are the key for understanding
the efficiency of the Metropolis scheme for calculating ‘conventional’ expectation
values such as the mean energy, pressure, or the end-to-end distance of polymers. A
positive aspect of the Monte Carlo method is the flexibility in choosing the step size
for a move xxx → xxx′. The optimum step, and step size depends on the system under
study. For dense liquids, due to excluded volume, random configurations are usually
very unlikely to be statistically relevant, while small displacements of a statistically
relevant configuration will be often relevant, too. For the Ising model, a single step
may be the reorientation of a single spin, or the reorientation of a cluster of spins, and
the conventional game is to search for most efficient implementations. It is important
to realize that the Monte Carlo trajectory through phase space can be interpreted as
resulting from an underlying dynamics obeying a master equation (loss- and gain-
equation) for the (time dependent) probability distribution. The equation of change
for p(xxx, t) reads

d
dt

p(xxx, t) = −∑
xxx′

w(xxx → xxx′)p(xxx, t)+∑
xxx′

w(xxx′ → xxx)p(xxx′, t) . (9.6)

It is obvious that p(xxx), which fulfills the condition of detailed balance (9.4) is the
stationary solution of the master equation (9.6). Of course, the meaning of time is
not a physical one, a time unit corresponds to a single Monte Carlo step, and we
have freedom to choose the Monte Carlo step. Dynamic correlations, however, are
important to quantify the precision of the obtained results, and eventually have a
physical meaning, if the configuration space xxx is a subspace of the space of slow
variables, which are coupled to fast degrees of freedom (acting as a ‘heat bath’).

We have seen that the Metropolis scheme is not useful for calculating Zβ . While
expectation values often contain sufficient information to validate models, the above-
mentioned approach still has strong deficiencies. First of all, a new simulation has
to be performed for each temperature. Second, low energy states are visited more
often than potentially needed to extract the relevant information about their effective
contribution to expectation values. Third, close to phase transitions (close to criti-
cal temperatures), the Metropolis scheme seriously slows down, if not sophisticated
moves are introduced which overcome the problem of long-range correlations.



148 9 Equilibrium Statistics: Monte Carlo Methods

9.2 Normalization Constants, Partition Function

In this section we shortly summarize methods to directly compute the partition func-
tion Zβ , or equally, a class of high dimensional integrals parameterized by tempera-
ture. In particular, the density-of-states Monte Carlo method overcomes the problem
with a slow-down close to critical temperatures since Zβ is obtained from the density
of states which is independent of temperature.

To be more general, and to also match with the nomenclature used by non-
physicists, let us consider a d-dimensional integral over ‘arbitrary’ function q(xxx,β ),
xxx ∈ ℜd parameterized by 0 ≤ β ≤ 1

Zβ ≡
∫

q(xxx,β ) dxxx . (9.7)

The normalized density, fulfilling
∫

p dxxx = 1, explicitly reads

p(xxx,β ) =
q(xxx,β )

Zβ
. (9.8)

A particular q is the so-called ‘geometric path’ between functions q0 and q1:

q(xxx,β ) = q0(xxx)1−β q1(xxx)β . (9.9)

We see, that the canonical distribution can be considered as a special geometric (tem-
perature) path if we choose

q0(xxx)
can= 1, q1(xxx)

can= e−H(xxx) ,

Zβ
can=

∫
e−βH(xxx) dxxx, Z0

can=
∫

1 dxxx = V . (9.10)

Here, we introduce the notation
can= whenever the particular choice of a canonical

(can) distribution for q1,q0 of (9.10) is made to simplify a more general expression,
and V denotes ‘volume’. Of course it is then identical calculating Z1 for all β , or, for
all β , Zβ at fixed β = 1. From Zβ one obtains free energy F , mean energy 〈H〉,

F ≡− 1
β

lnZβ , 〈H〉 = −
d lnZβ

dβ
, (9.11)

as well as entropy S = β (〈H〉−F), heat capacity CV = β 2(
〈
H2

〉
−〈H〉2) etc.. The

canonical distribution maximizes S = −
∫

p ln pdxxx = −〈ln p〉 under the constraint
〈H〉 =constant and

∫
pdxxx = 1. Notice, that β appears to be inverse temperature, but

will be eventually used below as a pure, ‘unphysical’, interpolating parameter where
0 ≤ β ≤ 1 holds. For the same reason, we will be only interested in calculating Z1.
Once we have a method to compute Z1 for given hamiltonian H(xxx), we also know
how to compute Zβ by just multiplying this hamiltonian by β . Except for the case of
density of states Monte Carlo in Sect. 9.3, each new β requires a new, independent,
calculation.
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9.2.1 Standard Monte Carlo

Standard Monte Carlo consists of choosing an arbitrary, eventually optimized, and
normalized P(xxx) to obtain Zβ from M realizations I compatible with P:

Zβ =
∫

q(xxx,β )
P(xxx)

P(xxx) dxxx = 〈I〉P with I =
q(xxx,β )
P(xxx)

. (9.12)

The error for the calculated Zβ is estimated ‘on the fly’ as

σ2 =
1
M

(
〈
I2〉

P −〈I〉2
P) . (9.13)

This formula is derived making use of the law of large numbers and offers the reason
why the standard deviation σ decreases with M−1/2 independent of dimension d.
Two special choices for P, denoted as ‘uniform’ and ‘canonical’, are

A) P uniform (constant)
(use uniform pseudo or quasi random generator to approximately realize P)

P =
1

∫
1 dxxx

= V−1 → Zβ = V 〈q〉P
can= V

〈
e−βH

〉

uniform
; (9.14)

B) P ∝ q (canonical)
(use Metropolis, rejection method, inversion etc. to approximately realize P)

P =
q

Zβ
→ Zβ =

V
〈q−1〉P

can=
V

〈
eβH

〉
canonical

. (9.15)

The standard Monte Carlo method still requires one run for each β . For the uniform
case (A) it is straightforward to obtain realizations. Using a build-in pseudo random
generator is upon the approximate solutions. For case (A), we miss the ‘relevant’
low energy regions, which is bad for above-mentioned expectation values, but good
for calculating Zβ if uniform sampling in xxx is cheap, and if all energy levels are
reached in a comparable fashion (not so for dense fluids). Concerning case (C) and
more general cases, it is often difficult to realize P, which prevents calculating Zβ to
desired accuracy. Just for the one-dimensional case (d = 1) we would like to mention
the variable transformation method to obtain realizations y distributed according to
P(y) using uniformly distributed random numbers with p(x) = V−1, x ∈ [0,V ]. By
noticing the identity

∫
p(x)dx = 1 =

∫
P(y)dy =

∫
p(y(x))x′(y)dy (9.16)

we need to solve the differential equation x′(y) = V P(y)to obtain x(y), and if we
further invert x analytcally or numerically to obtain y(x), this constitutes the rule to
obtain P-distributed realizations y(xxx) from random numbers xxx.
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9.2.2 Direct Importance Sampling

Direct importance sampling is based on the following basic identity, valid for arbi-
trary α(xxx)

Z1

Z0
=

∫
q1 dxxx

∫
q0 dxxx

=
∫

α q1q0 dxxx
∫

q1 dxxx
∫

q0 dxxx
∫

α q0q1 dxxx
=

〈αq1〉p0

〈αq0〉p1

can=

〈
α e−H

〉
uniform

〈α〉canonical
. (9.17)

Special cases:

A) α = 1/q0
can= 1 (uniform)

B) α = 1/(q0q1)
can= eH (canonical)

C) α = min(1/q0,1/q1) (acceptance ratio method)

D) α = q 1
2
/(q0q1) with q 1

2
in between q0 and q1

(bridge sampling, umbrella sampling, thermodynamic integration)

Z1

Z0
=

〈
q 1

2
/q0

〉

p0〈
q 1

2
/q1

〉

p1

can=

〈
q 1

2

〉

uniform〈
q 1

2
eH

〉

canonical

(9.18)

Functions q 1
2

and q0, q1 should possess overlap. Otherwise refine by using several
spans, or perform iterations with several ‘q 1

2
’. Optimal path (weighted harmonic

mean):
q 1

2
(xxx) =

p0 p1

s0 p0(xxx)+ s1 p1(xxx)
, st = nt/(n0 +n1) . (9.19)

This α is not directly usable since it depends on Z1/Z0. Iterative schemes have
been proposed, e.g., in [407], which can reduce the simulation error by orders
of magnitude when compared to the conventional importance sampling method.
Considering infinitely many spans qε ,q2ε , . . .q1−ε , bridge sampling equals path
sampling.

9.2.3 Path Sampling

Path sampling is based on basic identity

d
dβ

lnZβ =
∫

1
Zβ

d
dβ

q(xxx,β ) dxxx =
〈

d
dβ

lnq(xxx,β )
〉

p

can= −〈H(xxx)〉p , (9.20)

where definition (9.8) was used. Integrating (9.20) over β from 0 to 1 yields, for the
‘physical’ case,

ln
Z1

Z0

can= −
∫

H(xxx)p(xxx,β ) dxxx dβ = −
∫

H(xxx)
P(β )

p(xxx;β ) dxxx dβ , (9.21)

This expression involves a joint distribution p(xxx;β ) = p(xxx,β )P(β ), and P(β ) which
may be, for example, uniform. In practise, the goal is to find the optimum path P(β ).
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9.3 Density of States Monte Carlo (DSMC)

Density of states Monte Carlo takes an orthogonal ‘view’ to the problem of high-
dimensional integration. It is based on the identity, with Q(E) ≡ e−E

Zβ

Z0
=

∫
q(xxx,β ) dxxx

Z0

can=
∫

Q(H(xxx))β dxxx
Z0

=
∫

n(E)e−βE dE =
〈

Qβ (E)
〉

n(E)
, (9.22)

where n(E), due to (9.22), is defined as a normalized density of states,
∫

n(E)dE = 1.
The appeal of this method, introduced in [408], lies in the fact, that n(E) is indepen-
dent of β . Thus Zβ for all β is obtained from a single ‘athermal’ simulation. For
this reason the method cannot suffer from a slow down close to critical tempera-
ture, for example. The method converts the high-dimensional integration to a one-
dimensional one, in its simplest form, where we have a single Lagrange multiplier
(β ). The method is much different in spirit compared with the previous ones men-
tioned in this section. Here, the distribution n(E) is not known at all a priori! For all
above examples, at least we knew the shape of the distribution function in advance. In
order to iteratively converge to the correct density of states, a procedure based on the
following consideration had been proposed [408, 409]: Assume, the histogram h(E)
of visited states is ‘flat’, while performing a Monte Carlo simulation which realizes a
certain, given, p(E), then h(E) ∝ p(E)n(E) with probability p visiting energy level
E, and n(E) ∝ p(E)−1. The trick is now to obtain a flat histogram, where ‘flat’ means
‘mostly constant’, or ‘not varying much within the possible energy range’, and has to
be quantified. The following explicit simulation scheme had been proposed, which
converges, and also fulfills a detailed balance criterion for the density of states in the
limit of small ‘loop parameter’ f . A large loop parameter enforces the phase space
trajectory to reach all energy levels quickly, which is just the opposite of what the
conventional Metropolis scheme of Sect. 9.1 achieves.

DSMC Algorithm

Perform Metropolis Monte Carlo with time-dependent transition probability w(xxx →
xxx′)(t) = min(1, p(H(xxx′), t)/p(H(xxx), t)).

• Start (i = 1):
p(E, t) = f−hi(E,t) (hi is the histogram recorded in round i up to time t) with
‘large’ f = e to rapidly explore the whole E range, and converge towards a ‘flat’
hi(E, tmax) (achieved at time tmax). Set pi(E) ≡ p(E, tmax).

• Iteration step (i+1):
p(E, t) = pi(E) ∗ f−hi+1(E)/(i−1) to obtain for large i a steady, polished, p(E)
and to approximately fulfill detailed balance in the corresponding Metropolis
scheme.
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The method is easy to implement, and it is possible to extend the method by us-
ing parallel runs with different, overlapping E windows. A ‘drawback’ of density of
states Monte Carlo seems to lie in the limited range of accessible expectation values
〈A〉 with A = A(E). Histogram recording becomes memory consuming if generalized
canonical distributions are considered (involving more than a single Lagrange para-
meter). However, one can record realizations A and obtain 〈A〉 in a postprocessing
step, or further explore the numerical precision of the following, trivial, identity

〈
Anβ

〉
=

Z̃β

Zβ
, Z̃β ≡

∫
e−β H̃(xxx) dxxx, H̃(xxx) ≡ H(xxx)−n lnA(xxx) , (9.23)

which requires performing two independent simulations, with two different hamil-
tonians H and H̃ (but otherwise identical) to obtain

〈
Anβ〉 for all β and a single

n. To obtain 〈A〉 for several β , which may the most classical task, we would need
to run several simulations with fixed n = 1/β , which must be compared with the
conventional Metropolis scheme of Sect. 9.1.

Further Extensions

The density of states Monte Carlo method had been recently extended to compute
phase diagrams of dense Lennard–Jones fluids and binary glasses with N particles
in a volume V , characterized by a two-body interaction potential U(xxx) in [410, 411].
Here, use is made of the identity (fixed N,V )

β (E) = kB
∂S
∂E

|V =
∂ lnΩ(N,V,E)

∂E
, (9.24)

where Ω denotes the microcanonical partition function. Integration over E yields

lnΩ(E) =
∫ E

E0

β (E ′)dE ′ . (9.25)

Further, an expression for the configurational temperature [412, 413],

β (E) =

〈
−∑i ∇iFFFi

〉

〈
∑i |FFFi|2

〉 =
a(E)
b(E)

(9.26)

is employed, which is obtained using a phase point transformation, assuming that at
constant E, the phase space is uniformly occupied, while U is smooth. Histograms
a,b,h,Ω are evaluated and Ω is used as guide for a walker in energy space. Further,
the known probability of observing a configuration xxx having total potential energy
U(xxx) is used as guide for a walker in configuration space. Finally, one obtains a
smooth, since integrated, distribution Ω from a and b. In all other respects, the above
listed algorithm is adapted for this application.
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9.4 Quasi Monte Carlo

The strikingly simple idea of quasi Monte Carlo is to replace pseudo random num-
bers by a quasi random sequence which is ‘known to be uniform’ in high dimensional
xxx space (exhibiting low ‘discrepancy’). Quasi Monte Carlo methods use determin-
istic samples at points that belong to low discrepancy sequences and approximate
the integrals by the arithmetic average of N function evaluations. According to the
KoksmaHlawka inequality their worst case error is of order (1/N) ∗ lnd N; where d
denotes the dimension. Since this term becomes huge when N is fixed and d is large,
as sometimes happens in practice, traditionally, there has been a certain degree of
concern about Quasi Monte Carlo [414] presents sufficient conditions for fast Quasi
Monte Carlo convergence which apply to isotropic and non-isotropic problems. It is

shown that the convergence rate of Quasi Monte Carlo is of order N−1+p/lnN1/2
with

p ≥ 0. Compared to the expected rate N(−1/2) of Monte Carlo it shows the superi-
ority of Quasi Monte Carlo. To understand the success of Quasi Monte Carlo in some
applications, also the notion of effective dimension has been introduced, cf. [415].

One example is the ‘Richtmeyer sequence’ xxx(n) ∈ [0,1]d with x(n)
µ = n

√
Pµ mod

1 with prime number P . Other often used sequences are the so called Faure and
Niedermeyer sequences. There is no exhaustive knowledge about the overall ef-
ficiency of quasi Monte Carlo methods for computing high dimensional integrals.
Quasi Monte Carlo is certainly good for low-dimensional integration, but supersedes
pseudo Monte Carlo only if N > ed (huge for large d). It is yet an empirical observa-
tion that quasi random numbers should not be used for solving stochastic differential
equations (Langevin equations) [416].





10

Irreducible and Isotropic Cartesian Tensors

∆ µν,λγ
(2)

In this chapter we summarize definitions and properties of cartesian, anisotropic,
irreducible and isotropic tensors and related tensor operators. In several aspects more
exhaustive, detailed treatments, eventually using a different notation, can be found
in [4, 82, 417–420]. We present rules and properties using tensor product notation
and tend to avoid component notation (except in footnotes). The formulas presented
in this chapter help to evaluate tensor operators (differentiation, integration) without
performing a differentiation or an integral (cf. Sect. 10.5 and (10.68)), to rewrite
arbitrary tensors of rank l made of unit vectors uuu in terms of the dyadics uuu(k) ≡ uuuuuu..uuu

of rank k ≤ l, to rewrite anisotropic tensors uuu[l] ≡ uuuuuu..uuu of rank l in terms of uuu(k) of
rank k ≤ l (using (10.14)), and vice versa (recursively using (10.67)). This sets us in
position to write down (coupled) moment equations starting from a given differential
equation for (orientational) distribution functions in Chap. 11, and to write down
approximate sets of coupled equations for moments of the distribution function.

10.1 Notation

Let TTT l be an arbitrary tensor of rank l. Low rank tensors are scalars (rank 0) and
vectors (rank 1). Components of TTT l are denoted as (TTT l)µ1µ2..µl = T l

µ1µ2..µl
, and a

bold face index µµµ stands for the ordered set of indices µ1µ2..µl . Examples clarifying
notation used in this book:

(TTT l)µµµ = T l
µ1µ2..µl

= T l
µµµ , rank l

(TTT l TTT m)µµµ = T l
µ1µ2..µl

T m
µl+1µl+2..µl+m

, rank l+m

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 155–168 (2005)
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(TTT l ·TTT m)µµµ = T l
µ1µ2..µl−1λ T m

λ µl ..µl+m−2
, rank l+m–2

(TTT l : TTT m)µµµ = T l
µ1µ2..µl−2λγ T m

γλ µl−1..µl+m−4
, rank l+m–4

(TTT l �k TTT m)µµµ = T l
µ1µ2..µl−kλ1..λk

T m
λk..λ1µl−k+1..µl+m−2k

, rank l+m–2k

(uuu×TTT l)µµµ = εµ1λκ uλ T l
κµ2..µl

(111(l))µµµννν ≡
l

∏
i=1

δµiνi , 111(1) = 111, 1(1)
µν = δµν (10.1)

where summation (∑3
µl=1) over repeating indices is always understood (we use the

Einstein summation convention). Contraction over indices has to be always per-
formed in a strict, ordered, way. In the above, δµν is the Kronecker symbol, the
components of the 3×3 unity matrix 111, i.e., δµν = 1 if µ = ν , and δµν = 0 if µ 	= ν .
Notice, δµµ = 3 due to the summation convention. The symbols εµνλ are the compo-
nents of the total antisymmetric tensor εεε of rank 3, with εµνλ = 1 (−1) if (µ ,ν ,λ )
is an even (odd) permutation of (1,2,3), respectively, and εµνλ = 0 if two or more
of its three indices are identical. There are some very basic ‘rules’ for evaluating ex-
pressions containing δµν and εεε such as δµν Tν = Tµ , δµν δνλ = δµλ , εµνλ = −ενµλ ,
εµνλ T sym

νλ = 0, εµνκ εκλγ = δµλ δνγ −δµγ δνλ , which implies εµνκ εκνγ =−2δµγ . Fur-
ther, εµνλ uν vλ = (uuu× vvv)µ . The superscript ‘symm’ denotes the symmetrized, and
normalized tensor, T symm

µν = (Tµν +Tνµ)/2 and accordingly for higher order tensors.
A k-fold contraction is denoted by the symbol �k; for k = 1 and k = 2 we still prefer
to use the classical notation ‘·’ and ‘:’, rather than �1, and �2, respectively.

We introduce the rank l tensors uuu(l), the ‘anisotropic’ tensors uuu[l] (l-fold symmet-
ric traceless dyadic product of unit vectors uuu; the uuu[l] are then called ‘irreducible’ or
‘anisotropic’) and the corresponding irreducible tensor QQQ[l] via

uuu(l) ≡ uuuuuu..uuu ,

uuu[l] ≡ uuu(l) = uuuuuu . . .uuu ,

aaa(l) ≡
〈
uuu(l)

〉
= 〈uuuuuu . . .uuu〉 ,

aaa[l] ≡
〈
uuu[l]

〉
=
〈

uuuuuu . . .uuu
〉

, alignment tensor of rank l ,

QQQ[l] ≡ Ql uuu[l] = QQQQQQ . . .QQQ ,

(10.2)

The hard brackets ‘[]’ symbolize an irreducible quantity, the soft brackets a simple
dyadic product, ‘a’ stands for ‘averaged’ quantity.

Definitions of the operators ∇,LLLL, ∂
∂uuu ,∆ are given in Sect. 10.3, and repeated in

the Sect. 10.5.

10.2 Anisotropic (Irreducible) Tensors

How to construct, for given uuu(l) of rank l, the anisotropic, irreducible tensors uuu[l]: A
naive, illustrative, solution is to make an ansatz (below with int(l/2) parameters α..)
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using solely (!) symmetric tensors made of uuu and the unity matrix 111, and to require
a single, arbitrarily chosen, trace (repeating two indices) to vanish. This works as
follows (apart from the trivial relationship for l = 1: uuu[1] = uuu), where iii symbolizes a
‘half unity matrix’ with the property 111 = iiiiii, or δµν = iµ iν :

• l = 2

uuu[2] = uuusym
(2) −α111sym = uuu(2) −α iiiiii,

0 = Tr(uuu[2]) = uλ uλ −α δλλ = 1−3α → α =
1
3

,

→ uuu[2] = uuu(2) −
1
3

111

⇔ uuuuuu = uuuuuu− 1
3

111 (10.3)

• l = 3

uuu[3] = uuusym
(3) −α{uuu111}sym ,

= uuu(3) −α
1
3
(iiiiiiuuu+ iiiuuuiii+uuuiiiiii) ,

0 = Tr(uuu[3]) = uuu−α
1
3
(3uuu+uuu+uuu)) =

(
1− 5

3
α
)

uuu → α =
3
5

,

→ uuu[3] = uuu(3) −
3
5
{uuu111}sym . (10.4)

• l = 4

uuu[4] = uuusym
(4) −α1(uuu(2)111)sym −α2{111111}sym ,

= uuu(4) −α1
1
6
(iiiiiiuuu(2) + iiiuuuiiiuuu+ ...)−α2

1
3
(111111+ iii111iii+ iiiiiiiiiiii) ,

0 = Tr(uuu[4]) = uuu(2) −α1
1
6
(3uuu(2) +4uuu(2) +111)−α2

1
3
(3111+2111) ,

=
(

1− 7
6

α1

)
uuu(2) −

(
1
6

α1 +
5
3

α2

)
111 → α1 =

6
7
, α2 = − 3

35
,

→ uuu[4] = uuu(4) −
6
7
{uuu(2)111}sym +

3
35

{111111}sym . (10.5)

Notice, that the same strategy can be used (and easily implemented on a com-
puter) for any tensor made of uuu’s and constants such as iii’s and εεε , where the ansatz
just has to have the correct rank. Examples are uuu×uuu[l] (rank l) or ∇uuu[l] (rank l +1),
uuu[l]uuu[m] (rank l +m), uuu[l] ·uuu[m] (rank l +m−2) etc.1 In particular, all terms on the right

1 Another explicit example: hhhuuuuuu = (hhhuuuuuu + uuuhhhuuu + uuuuuuhhh)/3 − (111hhh + iiihhhiii + hhh111)/15 − 2uuu ·
hhh(111uuu + iiiuuuiii + uuu111)/15 is symmetric and traceless, thus anisotropic. See Chapt. 10 for the

∆∆∆ (3)-operator, which has the property hhhuuuuuu = ∆∆∆ (3) �3 hhhuuuuuu.
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hand sides of the above equations can be made anisotropic, and finally, we can also
invert the equations to express any tensor in terms of anisotropic tensors uuu[l]. As soon
as we would have reached this state, we could use the rules of the tables of Sect. 10.5
to perform any derivations. However, there is a direct route which prevents solving
a system of equations to obtain the irreducible part of any given tensor (in terms of
uuu’s).

10.3 Differential Operators (∇, LLLL etc.)

Consider a vector QQQ = Quuu, unit vector uuu, and the norm Q (length) of QQQ, i.e., Q ≡ |QQQ|
and |uuu| = 1. The differential operators ∇ (nabla operator), ∆ (Laplace operator), ∂

∂uuu
(gradient on unit sphere), and LLLL (angular operator) are defined as follows

∇ ≡ ∂
∂QQQ

, ∆ ≡ ∇ ·∇ ,

∂
∂uuu

≡ Q(111−uuu(2)) ·∇ ,

LLLL ≡ QQQ×∇ = uuu× ∂
∂uuu

. (10.6)

The latter identity is proven in the footnote.2 Using basic identities such as ∇Q = uuu
and uuu ·∇ = (∂QQQ/∂Q) ·∇ = ∂/∂Q allows to obtain a number of identical representa-
tions (splitting into radial and orientational part) for the nabla operator,

∇ = uuu(2) ·∇+(111−uuu(2)) ·∇

= uuu
∂

∂Q
+

1
Q

(111−uuu(2)) ·
∂

∂uuu

= (∇Q)
∂

∂Q
+(∇uuu) · ∂

∂uuu

= uuu
∂

∂Q
− 1

Q
uuu×LLLL . (10.7)

The angular operator LLLL solely acts on the orientational part, while the term ∝ ∂/∂Q
on the rhs of (10.7) acts on the radial part of the operator argument. Further, one has
3

uuu×LLLL = −(111−uuu(2))
∂

∂uuu
, uuu ·LLLL = uuu · ∂

∂uuu
= 0 . (10.8)

2 Proof of (10.7): (uuu × ∂/∂uuu)µ = Qεµνλ uν (δλγ − uλ uγ )∇γ = Qεµνλ uν δλγ ∇γ = Q(uuu ×
∇)µ = (QQQ×∇)µ where we used the antisymmetry of εεε , cf. previous footnote.

3 To let the reader feel comfortable with the short notation, here is the proof of (10.8) –
all tiny steps – in component notation: (uuu×LLLL)µ = εµνλ uνLλ = uν εµνλ ελκγ uκ ∂/∂uγ =
uν (δµκ δνγ − δµγ δνκ )uκ ∂/∂uγ = uν uµ ∂/∂uν − uν uν ∂/∂uµ = uν uµ ∂/∂uν − ∂/∂uµ =
uν uµ ∂/∂uν − δµν ∂/∂uν = −(δµν − uµ uν )∂/∂uν , where u2 = uλ uλ = 1 and a property
of εεε from the foregoing footnote has been used.
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The corresponding radial–orientation splitting for the Laplace operator reads


 = 
Q +
1

Q2 LLLL
2, 
Q =

∂ 2

∂Q2 +
2
Q

∂
∂Q

. (10.9)

In order to a perform an exercise which just applies results summarized in this sec-
tion, let us explicitly make sure that LLLL2 = ∂

∂uuu · ∂
∂uuu . We will use (10.24), some expres-

sions from the tables in Sect. 10.5, and the fact that any trace of QQQ[l] vanishes,

∂
∂uuu

· ∂
∂uuu

QQQ[l] =
∂

∂uuu
·
(

(l +1)uuuQQQ[l] − (2l +1)
1
Q

QQQ[l+1]

)

= (l +1)(
∂

∂uuu
·uuu)QQQ[l] −

2l +1
Q

∂
∂uuu

·QQQ[l]

= 2(l +1)QQQ[l] −
2l +1

Q2

(
(l +2)QQQ ·QQQ[l+1] − (2l +3)Tr(QQQ[l+2])

)

=
(

2(l +1)− (2l +1)(l +2)(l +1)
2l +1

)
QQQ[l]

= −l(l +1)QQQ[l] = LLLL2QQQ[l] . (10.10)

The same result can be obtained using properties of the isotropic tensor ∆∆∆ (l,1,l)

(10.18), cf. Sect. 10.4.1, (10.14).

10.4 Isotropic Tensors

The isotropic tensor ∆∆∆ (l) of rank 2l is defined by the property, that it projects an
arbitrary tensor TTT l of rank l to its irreducible, symmetric traceless part,

∆∆∆ (l) �l TTT l = TTT l . (10.11)

Therefore, ∆∆∆ (l) is a projector, obeying

∆∆∆ (l) �∆∆∆ (l) = ∆∆∆ (l). (10.12)

A special case is – notice the different subscripts (l) and ([l]), cf. definitions (10.2) –

∆∆∆ (l) �l uuu(l) = uuu[l] . (10.13)

Obviously, the equations (10.3-10.4) provide first implicit representations for ∆∆∆ (2),
and ∆∆∆ (3), while ∆∆∆ (1) = 111, but as we will see below, there is also a strategy for itera-
tively constructing ∆∆∆ (l), and thus uuu[l]. The ∆∆∆ ()’s will be constructed using l Kronecker
symbols for each term, requiring symmetry with respect to the first and last l com-
ponents independently, and vanishing traces. Useful properties for ∆∆∆ (l) can be found
in [82].
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10.4.1 Construction of the Isotropic Tensors ∆∆∆ (l)

The explicit recursion formula for all l ≥ 1 reads, for the components (µµµ abbreviates
the indices µ1µ2..µl and ννν the indices ν1ν2..νl)

∆ (l)
µµµ ,ννν =

1
l

(
l

∑
i=1

δµiν1 ∆ (l−1)

×××i(µµµ),×××1(ννν)

)

− 2
l(2l −1)

(
l−1

∑
i=1

l

∑
j=i+1

δµiµ j ∆
(l−1)

×××1(×××i
µ1

(××× j
ν1

(µµµ))),×××1(ννν)

)

, (10.14)

with ∆∆∆ (0) = 1 to start the recursion. We introduced an ‘exchange operator’ ×××() to
keep the notation short, and to allow for immediate implementation in a symbolic
programming language,

µµµ = µ1µ2..µi−1µiµi+1.. ,

×××i(µµµ) = µ1µ2..µi−1 µi+1.. ,

×××i
ν(µµµ) = µ1µ2..µi−1 ν µi+1.. , (10.15)

With the formula (10.14) at hand – we skip our proof, and have not seen a simi-
lar perfectly explicit formula elsewhere in the literature although it should probably
exist –, we can let the computer generate anisotropic tensors without solving the sys-
tem of equations as for our derivation (10.4). For l = 1 and l = 2, (10.14) evaluates
as

∆ (1)
µ1,ν1

= δµ1ν1∆ (0)

×××1(µ1),×××1(ν1)
−

0

∑
i=1

.. = δµ1ν1∆ (0) = δµ1ν1 (10.16)

and, using ×××1(ννν) = ν2, ×××2
ν1

(µµµ) = µ1ν1, etc.,

∆ (2)
µµµ ,ννν =

1
2

(
2

∑
i=1

δµiν1 ∆ (1)
×××i(µµµ),ν2

)

− 1
3

(
δµ1µ2 ∆ (1)

ν1,ν2

)
,

=
1
2

(
δµ1ν1 δµ2ν2 +δµ2ν1 δµ1ν2

)
− 1

3
δµ1µ2 δν1ν2 , (10.17)

which equals (2.11) in [82].

10.4.2 Generalized Cross Product ∆∆∆ (l,1,l)

The following isotropic tensor ∆∆∆ (l,1,l) of rank 2l +1

∆ (l,1,l)
µµµ ,λ ,µ̃µµ ≡ ∆ (l)

µµµ ,ννν ενlλγ ∆ (l)

×××l
γ (ννν),µ̃µµ , (10.18)

explicitly constructed using (10.14), defines a generalized (irreducible) cross prod-
uct. With TTT l being an arbitrary tensor of rank l,
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(bbb×TTT l)µµµ ≡ ∆ (l,1,l)
µµµ ,λ ,µ̃µµ bλ TTT l

µ̃µµ = −( bbb · εεε · TTT l )µµµ , (10.19)

which simplies if TTT l is anisotropic, in particular, for TTT l = uuu[l], to

bbb×uuu[l] ≡ bbb · (−εεε) ·uuu[l] . (10.20)

since uuu[l] is symmetric and traceless; the rule is then to replace × by ·(−εεε)·. In lowest

order we simply have ∆ (l,1,l)
µ,λ ,ν = εµ,λ ,ν . Notice the property

∆ (l,1,l)
µµµ ,λ ,ννν = −∆ (l,1,l)

ννν ,λ ,µµµ . (10.21)

10.4.3 Generalized Tensor ∆∆∆ (l,k,l)

In order to further generalize, [82] introduced the notation ∆∆∆ (l,k,l) with ∆∆∆ (l,0,l) = ∆∆∆ (l)

(defined in (10.14)), and ∆∆∆ (l,1,l) (defined in (10.18)).

∆ (l,2,l)
µµµ ,λκ,µ̃µµ = ∆ (l)

µµµ ,ννν ∆ (2)
νlγ,λκ ∆ (l)

×××l
γ (ννν),µ̃µµ . (10.22)

For l = 1, one has ∆ (1,2,1)
µ,λκ,ν = ∆ (2)

µν ,λκ .

10.4.4 Implications (Summary)

Using the definitions (10.6), (10.2) and the ∆∆∆ (l,k,l)-operators of the following sec-
tions, we can derive all results listed in the tables of the subsequent Sect. 10.5,
and some further very useful relationships (more advanced rules can be found in
[82, 417, 418]).

Tr(QQQ[l]) = 0, QQQsym
[l] = QQQ[l] , (10.23)

uuu[l] =
2l +1
l +1

uuu ·uuu[l+1] , (10.24)

uuu[l−1] =
2l −1

l
uuu ·uuu[l] , (10.25)

uuu[l]uuu = uuu[l+1] +
l

2l +1
∆∆∆ (l) �l−1 uuu[l−1] , (10.26)

uuu[l]uuu[2] = uuu[l+2] +
2l

2l +3
∆∆∆ (l,2,l)�l uuu[l]

+
l(l −1)

(2l +1)(2l −1)
∆∆∆ (l) �l−2 uuu[l−2] , (10.27)

uuu2
[l] ≡ uuu[l]�l uuu[l] =

l!
(2l −1)!!

, (10.28)
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uuu[l]�l uuu[l+k] =
u2

[l+k]

u2
[l]

uuu[k] =
(l + k)!(2k−1)!!
k!(2l +2k−1)!!

uuu[k] , (10.29)

∇QQQ[l] = Ql−1(luuu−uuu×LLLL)uuu[l] , (∗) (10.30)

∇uuu[l] = − 1
Q

uuu×LLLLuuu[l] , (10.31)

∂
∂uuu

·QQQ[l] = (l +1)Qluuu ·uuu[l] =
l(l +1)
2l −1

Qluuu[l−1] , (10.32)

∂
∂uuu

uuu[l] =
∂uuu[l]

∂uuu
= (l +1)uuuuuu[l]− (2l +1)uuu[l+1] , (10.33)

LLLL·uuu[l] = εεε : uuu[l] = 0 , (10.34)

LLLLuuu[l] = −(2l +1)uuu×uuu[l+1] = −l uuu[l]�l ∆∆∆ (l,1,l) , (10.35)

LLLL2uuu[l] = −l(l +1)uuu[l] . (10.36)

In (10.28), we have defined the scalar u2
[l] ≡ uuu[l] �l uuu[l] (l-fold contraction), which

must not be confused with the squared tensor uuu2
[l] ≡ uuu[l] · uuu[l] (single contraction,

resulting in a tensor of rank 2(l −1).

10.5 Differential Operations (Tabular Form)

Operator Operator Operator Argument
Symbol Defintion Q QQQ uuu

∇ ∂
∂QQQ uuu 111 1

Q (1−uuu(2))
∂

∂uuu Q(111−uuu(2)) ·∇ 0 Q(111−uuu(2)) 111−uuu(2)
∂

∂Q
∂

∂Q 1 uuu 0

LLLL uuu× ∂
∂uuu 0 −εεε ·QQQ −εεε ·uuu

∆ ∇ ·∇ 2
Q 0 − 2

Q2 uuu

LLLL2 LLLL·LLLL 0 −2QQQ −2uuu

∇· – 3 2
Q

∂
∂uuu · – 2Q 2
LLLL· – 000 000
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Operator Operator Argument
Symbol QQQ[l] QQQ[2]

∂
∂Q lQl−1uuu[l] 2Quuu[2]

∇ Ql−1(luuu−uuu×LLLL)uuu[l] Q(2uuu−uuu×LLLL)uuu[2]
∂

∂uuu (l +1)uuuQQQ[l]− (2l +1) 1
Q QQQ[l+1] 3uuuQQQ[2] −5 1

Q QQQ[3]

LLLL QlLLLLuuu[l] Q2LLLLuuu[2]


 0 0
LLLL2 −l(l +1)QQQ[l] −6QQQ[2]

∇· Ql−1( l2

2l−1 uuu[l−1] + (2l +1)uuu[2] : uuu[l+1]) 10
3 QQQ

∂
∂uuu ·

l(l+1)
2l−1 Qluuu[l−1] 2Q2uuu

LLLL· 0 0

Operator Operator Argument
Symbol uuu[l] uuu[2]

∇ − 1
Q uuu×LLLLuuu[l] − 1

Q uuu×LLLLuuu[2] = 1
Q (−2uuu(3) +111uuu+ iiiuuuiii)

∂
∂uuu (l +1)uuuuuu[l]− (2l +1)uuu[l+1] 3uuuuuu[2] −5uuu[3] = −2uuu(3) +111uuu+ iiiuuuiii
LLLL −(2l +1)uuu×uuu[l+1] −5uuu×uuu[3]


 − 1
Q2 l(l +1)uuu[l] − 6

Q2 uuu[2]

LLLL2 −l(l +1)uuu[l] −6uuu[2]

∇· 2l+1
Q uuu[2] : uuu[l+1] 2uuu

∂
∂uuu ·

l(l+1)
2l−1 uuu[l−1] 2uuu

LLLL· 0 0

In calculations, component notation should be always used. (LLLLuuu[2])µνλ =
εµνκ uκ uλ + εµκλ uκ uν , is one example which is not immediately rewritten in the
simple tensor product notation. However, we prefer to have short notatios in this
chapter.

10.6 Nematic Order Parameters

The 2nd rank alignment tensor can be characterized by the amount of distinct eigen-
values, as described in Sect. 7.4. For 1, 2, and 3 distinct eigenvectors, it describes a
state of isotropic, uniaxial, and biaxial symmetry, respectively.

10.6.1 Uniaxial Phase

With the ordinary nematic order parameters Sl and director nnn (with |nnn| = 1), both, as
well as the alignment tensor aaa[l] of the nematic phase defined through
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aaa[l] ≡
〈
uuu[l]

〉
= Sl nnn[l], with nnn[l] ≡ nnnnnn..nnn , (10.37)

we can use the above relationships (10.3-10.4) to immediately arrive at the following
sample identities for non-anisotropic tensor, still often prefered in the literature,

aaa(2) = S2nnnnnn+
1−S2

3
111 ,

aaa(3) = S3nnnnnnnnn+
3
5
(S1 −S3)(nnn111)symm , (10.38)

aaa(4) = S4nnnnnnnnnnnn+
6
7
(S2 −S4){nnnnnn111}sym

+
7−10S2 +3S4

35
{111111}sym .

The generalization of (10.28) becomes

uuu[l]�l nnn[l] =
l!

(2l −1)!!
Pl(uuu ·nnn) , (10.39)

with the lth order Legrende polynomial Pl . In particular, we have, by combining
(10.28) with (10.39),

Sl = 〈Pl(uuu ·nnn)〉 , (10.40)

an expression for the order parameter in terms of an expectation value. If the align-
ment tensors are available, which is the typical case when performing simulations
where the alignment tensors are obtained as time averages, and the director is not
known a priori, we can calculate the squared uniaxial order parameters via

S2
l =

(2l −1)!!
l!

aaa[l]�l aaa[l] . (10.41)

The director is obtained as the eigenvector corresponding to the largeset eigenvalue
of aaa[2]. In case of uniaxial order, two of the eigenvalues of aaa[2] must be equal. For
the general biaxial case, corresponding order parameters involving the remaining
eigenvectors of aaa[2] have been iontroduced. Further, when combining (10.37) and
(10.39), one has

Sl =
(2l −1)!!

l!
aaa[l]�l nnn[l] . (10.42)

10.6.2 Biaxial Phase

In the biaxial phase, the three principal values of the 2nd order alignment tensor aaa[2]
are distinct, cf. representation (7.23), and we have two ‘directors’ denoted as nnn and
mmm4

aaa[2] = (S2 +B2/2) nnnnnn +B2 mmmmmm , (10.43)

4 The third one, say lll, can be always eliminated using the identity 111 = nnnnnn+mmmmmm+ llllll.
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with order parameters S2 and B2, where B2 is the second-order scalar biaxial order
parameter

B2 =
2
3

(〈P2(uuu ···nnn)〉+2〈P2(uuu ···mmm)〉) . (10.44)

It ranges in value by | B2 |≤ 2
3 (1− S2) ≤ 1. For perfect uniaxial alignment in the

nnn direction, S2 = 1 and B2 = 0. For perfect uniaxial alignment in the mmm direction,
B2 = −2S2 = 1. For random alignment (hence, isotropic) S2 = B2 = 0.

Similarly, we obtain for the fourth-order alignment tensors

aaa[4] =
(

S4 −
3
8

B4 +
1
2

M4

)
nnn[4] +B4mmm(4) +M4 nnn(2)mmm(2) (10.45)

where5

B4 =
8

35

[
4
(
〈P4(mmm ·uuu)〉+ 〈P4(lll ·uuu)〉

)
−3〈P4(nnn ·uuu)〉

]
, (10.50)

M4 =
8

35

[
11〈P4(lll ·uuu)〉−3

(
〈P4(nnn ·uuu)〉+ 〈P4(mmm ·uuu)〉

)]
. (10.51)

Note that there are 3 distinct fourth-order scalar measures of alignment: S4, B4, and
M4. In the uniaxial case with director nnn, we have B4 = M4 = 0, so that these two
can be interpreted as fourth-order measures of the deviation from uniaxiality. The
4th order Legendre polynomial P4(x) is bound to −3/8 ≤ P4 ≤ 1. The lowest order
Legendre polynomials are plotted in Fig. 10.1.

10.7 Tensor Invariants

The theorem of Caley and Hamilton states the following. Let AAA be a d × d matrix,
and

φ(λ ) = det(AAA−λ111) = λ d +ad−1λ d−1 + . . .+a0 (10.52)

be the characteristic polynomial of AAA where λi are roots of φ(λ ) = 0, i.e., eigenvalues
of AAA, with multiplicity νi. For arbitrary matrices AAA, not only traceless ones, which is
however not of relevance in the context of this book, one has

5 Equation (10.45) can be also rewritten more explicitely as

aaa(4) =
(

S4 −
3
8

B4 +
1
2

M4

)
nnn(4) +B4mmm(4) +M4{nnn(2)mmm(2)}sym

+α1{nnn(2)111}sym +α2{mmm(2)111}sym +α3{111111}sym, (10.46)

α1 ≡ 1
28

[24(S2 −S4)+12B2 +9B4 −16M4] , (10.47)

α2 ≡ 1
7
[6(B2 −B4)−M4], (10.48)

α3 ≡ 1
280

[4(14+5M4 −20S2 +6S4)−120B2 +15B4] . (10.49)
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Fig. 10.1. Legendre polynomials Pl(x) for l = 1,2,3,4. Uniaxial order parameters are defined
as Sl ≡ Pl(uuu · nnn) with director n. For nonpolar fluids (liquid crystal), only the even order pa-
rameters do not vanish, for polar fluids (ferrofluid) S1 ≥ 0 by convention. This figure shows,
in particular, that order parameters can have either sign. Except for the uniaxial phase, we
prefer order parameter tensors (alignment tensors) rather than scalar order parameters for the
description of anisotropic fluids

φ(AAA) = AAAd − I1AAAd−1 − . . .− Id111 = 0 . (10.53)

In this manuscript we are concerned with three dimensional problems, d = 3, thus
(10.53) becomes6

AAA3 = I1 AAA2 + I2 AAA+ I3 111 , (10.54)

and alternatively, by multiplication with AAA−1,

AAA2 = I1 AAA1 + I2 111+ I3 AAA−1 , (10.55)

where the coefficients define the tensor invariants

I1(AAA) ≡ TrAAA , (10.56)

I2(AAA) ≡ 1
2
{Tr(AAA2)− I2

1} , (10.57)

I3(AAA) ≡ detAAA . (10.58)

For anisotropic tensors AAA, such as the alignment tensor of rank 2, aaa[2], for which I1

vanishes, we have, by recursively multiplying (10.54) by aaa[2],

aaa[2]
i = I2 aaa[2]

i−2 + I3 aaa[2]
i−3 , (10.59)

for i ≥ 3 and with aaa[2]
0 = 111. With the help of (10.59), supplemented with a . . .

on both sides, recursively calculating the anisotropic powers of aaa[2] also poses no
problem, as illustrated in Table 10.1.

6 The implication (10.54) of the Caley-Hamilton theorem has been used to simplify the
appearance of the analytic extension of the linear stress-optic rule in Sect. 4.7.
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Table 10.1. The anisotropic part of any power of a dimensionless anisotropic (yet arbitrary 2nd
rank) tensor aaa[2] can be, for example, expressed as a linear combination of first and second or-
der terms, as demonstrated by the lowest powers in this table. Further entries are immediately
generated using the recursion (10.59)

aaa[2]
0 aaa[2]

1 aaa[2]
2 aaa[2]

3 aaa[2]
4 aaa[2]

5 aaa[2]
6 . . . aaa[2]

−1 =

0 1 0 I2 I3 I2
2 2I2I3 . . . 0 ×aaa[2]+

0 0 1 0 I2 I3 I2
2 . . . I−1

3 × aaa[2]
2

In ( ), and often in the literature, a third invariant is defined differently as

I(3) =
√

6Traaa[2]
3 . (10.60)

Using (10.59), we immediatly obtain the relationship between the two representa-
tions

I(3) =
√

6(I2 aaa[2] + I3) . (10.61)

10.8 Solutions of the Laplace Equation

Of particular relevance is the property LLLL2uuu[l] = −l(l + 1)uuu[l], thus uuu[l] (or equally
QQQ[l]) are the eigentensors of LLLL2 with eigenvalues −l(l + 1) (as we are familiar with
from quantum mechanics). The irreducible tensors QQQ[l] are solutions of the Laplace
equation,


QQQ[l] = 0 , (10.62)

since, using (10.9) and (10.2), we have

Q2
QQQQ[l] = Q2
(

∂ 2

∂Q2 +
2
Q

∂
∂Q

)
Qluuu[l] = l(l +1)uuu[l] . (10.63)

Equation (10.63) combined with (10.36) and (10.9) proves (10.62). Further tensorial
solutions of 
ψ = 0 with different radial dependence are the (descending) multipole
potentials XXX [l],

XXX [l](QQQ) ≡
(
− ∂

∂QQQ

)l

Q−1 =
(2l −1)!!

Q2l+1 QQQ[l] . (10.64)

This equation does not only offer the definition of the descending multipole poten-
tials XXX [l](QQQ), but also the relationship with the anisotropic tensors QQQ[l]. The multipole
potentials are symmetric, and traceless, since Tr(XXX [l](QQQ)) = 
Q−1 = 0.

Further, spherical surface tensors YYY [l](uuu), which carry the orientational depen-
dence of the multipole potentials, the cartesian counterpart of the spherical harmon-
ics Y m

l (uuu), are related to the anisotropic tensors uuu[l] as follows

YYY [l](uuu) ≡ Ql+1XXX [l](QQQ) = (2l −1)!! uuu[l] . (10.65)

7.36
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The factor Ql+1 is immediatly understood for dimensional reasons. We refer to [82]
for the connection between cartesian and spherical tensors.

The ∆∆∆ (l)-operator, for which we have the explicit expression (10.14) at hand gener-
ates the irreducible part for a given tensor,

∆∆∆ (l) �l uuu(l) = uuu[l]({uuu(k)},k ≤ l) = uuu(l) + (uuu(l) −uuu[l])({uuu(k)},k ≤ l −1) , (10.66)

with the l-fold dyadic product uuu(l) ≡ uuuuuu..uuu, and ({uuu(k)},k ≤ l) helps to remind us
to the dependence of an expression on the set of tensors uuu(k) with k ≤ l. The last
term in (10.66) has the important, with its bracket attached, property. One realizes,
that applying many of the rules presented in this chapter requires performing the
reverse, apparently more difficult task: rewrite the expression uuu(k) solely in terms
of anisotropic tensors {uuu[l]} with 0 ≤ l ≤ k (including constants, ‘l = 0). While for
scalars (k = 0), vectors (k = 1), tensors of rank 2 (k = 2) this is still trivial, it is
generally achieved using the trivial identity once again from another perspective

uuu(l) = (uuu(l) −uuu[l])+uuu[l] = (111(l) −∆∆∆ (l))�l uuu(l) +uuu[l] , (10.67)

with the important feature, that the term (111(l) −∆∆∆ (l))�l uuu(l), according to (10.66),
does depend only (and explicitly!) on {uuu(k)} with k ≤ l −1. We thus can iteratively
express uuu(k) for any k by applying (10.67) k times for l = k,k − 1, ..,1, in terms
of anisotropic tensors {uuu[l]} with l ≤ k. With the definitions (10.1) and expression

(10.14) we have an explicit expression to evaluate (111(l) −∆∆∆ (l))�l uuu(l) = uuu(l) − uuu[l],
which we do not need to write down (again)7.

10.10 Integrating Irreducible Tensors

Integrating dyadic products of irreducible tensors over the unit sphere evaluates as
follows (and is nonzero only if ranks k and l are equal):8

1
4π

∫
uuu[k]uuu[l] d

2u =
l!

(2l +1)!!
δkl∆∆∆ (l) , (10.68)

where ∆∆∆ (l) is the isotropic tensor of Sect. 10.4.

7 Examples: (l = 1) 111(1) −∆∆∆ (1) = 111− 111 = 0. (l = 2) (111(2) −∆∆∆ (2)) : uuu(2) = uuu(2) − (uuu(2) −
111/3) = 111/3, and thus uuu(2) = uuu[0]111/3 + uuu[2] is uuu(2) expressed solely in terms of {uuu[l]} with
0 ≤ l ≤ k.

8 Components: (1/4π)
∫

uµ..ν uλ ..γ d2u ∝ ∆ (l)
µ..ν ,λ ..γ .

10.9 The Reverse ∆∆∆ (l) Operation
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Nonequilibrium Dynamics of Anisotropic Fluids

In Chap. 9 we summarized methods for analyzing the equilibrium statistics of
physical system, using Monte Carlo methods. While at equilibrium complex fluids
may be isotropic or anisotropic, under the influence of external fields, all systems
tend to become anisotropic (isotropic external fields are seldom). The anisotropy is
induced by the external fields (flow field, magnetic field etc.) and must reflect the
tensorial symmetry of the applied field. We have to deal with the coupling of tensors
of different ranks, with important implications on Onsager reciprocal relationships,
a topic discussed elsewhere. This chapter is concerned with the dynamics, in par-
ticular, the orientational dynamics of structured fluids subjected to orienting fields.
The dynamics and anisotropy is properly modeled by using orientational distribution
functions, their equations of change, and the corresponding equations of change for
the moments (here, alignment tensors) of the distribution function. We restrict ourself
to discuss the case of one-particle (single-link) orientational distribution functions.

11.1 Orientational Distribution Function

Any orientational (part of a eventually space and time-dependent) distribution func-
tion f (uuu) with u2 = 1 can be expanded in terms of anisotropic tensors uuu[l], and the
tensorial coefficients in front of the uuu[l]’s are determined by multiplying f with uuu[l]
and subsequent integration over the tensor unit sphere, to yield

f (uuu) =
1

4π

(

1+
∞

∑
l=1

〈
ζluuu[l]

〉
�l (ζluuu[l])

)

=
1

4π

(
∞

∑
l=0

ζ 2
l aaa[l] �l uuu[l]

)

. (11.1)

The constant (4π)−1 ensures proper normalization 〈1〉 = 1, and the average 〈...〉 is
defined through 〈...〉 ≡

∫
... f (uuu)d2u. The prefactor

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 169–179 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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ζl =

√
(2l +1)!!

l!
(11.2)

is immediatly1 derived using (10.68).
With Sect. 10.5 we obtain

LLLL f =
∞

∑
l=1

ζ 2
l (LLLLuuu[l])�l aaa[l] = −

∞

∑
l=1

(2l +1)ζ 2
l (uuu×uuu[l+1])�l aaa[l] ,

LLLL2 f = −
∞

∑
l=1

l(l +1)ζ 2
l uuu[l] �l aaa[l] , (11.3)

where aaa[l] stands for the lth rank alignment tensor.

11.1.1 Alignment Tensors

The moments aaa[l] ≡
〈
uuu[l]

〉
=
〈
uuu[l]

〉
(rrr, t) of the distribution function f (rrr,uuu, t) (11.1)

we refer to as ‘alignment tensors’ aaa[l] of rank l’, with the convention aaa[0]�0 uuu[0] = 1.
In the early literature the scaled moments ζl

〈
uuu[l]

〉
, for the reason shown in (11.1),

were called alignment tensors. Notice the difference, relevant for the layout during
analytic evaluations: ζ1 =

√
3, ζ2 =

√
15/2, ζ3 =

√
35/2.

11.1.2 Uniaxial Distribution Function

For the special case of uniaxial order, f (uuu) = f (uuu · nnn) with director nnn of Sect. 10.6,
and order parameters aaa[l] = Slnnn[l], (11.1) simplifies, using (10.39), to

funi(uuu) =
1

4π

(

1+
∞

∑
l=1

(2l +1)Sl Pl(uuu ·nnn)

)

. (11.4)

Biaxial distributions, and alignment tensors for biaxial distributions are outside the
scope of this book. Viscosities for biaxial fluids made of uniaxial particles, along the
lines indicated in Sect. 7.3 on uniaxial fluids can be found in [315], and references
cited herein.

11.2 Fokker–Planck Equation, Smoluchowski Equation

An equation of change for distribution functions describing diffusion processes, the
Fokker–Planck equation, was derived and presented in Sect. 8.5. Accordingly, the
equation of change for the orientational distribution function f (rrr,uuu, t) can be also
written for the present purpose, cf. (11.44), as

1 Proof: ζk

〈
uuu[k]

〉
= ζk

∫
uuu[k] f (uuu)d2u = ζk ∑l ζ 2

l

〈
uuu[l]

〉
(4π)−1 ∫ uuu[k]uuu[l]d

2u = ζk ∑l ζ 2
l

〈
uuu[l]

〉

δklζ−2
l = ζk

〈
uuu[k]

〉
.
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∂ f
∂ t

= LFP f = −∇ · (ṙrr f )− ∂
∂uuu

· (u̇uu f ) , (11.5)

or, equivalently, with angular momentum ωωω = uuu× u̇uu,

∂ f
∂ t

= LFP f = −∇ · (ṙrr f )−LLLL· (ωωω f ) . (11.6)

Differential operators were defined in (10.6), and the equivalence between the two
representations follows using the tables in Sect. 10.5, and u2 = 1 which implies
1
2 du2/dt = uuu · u̇uu = 0. In this chapter we always consider volume-conserving flows.
Generally, the derivatives ṙrr, u̇uu, ωωω = uuu× u̇uu can be split into two parts from which one
is derived from a free energy (the ‘F’ part), plus an ‘external’, LLLL,∇-divergence-free,
remaining ‘f’ part, i.e., ẋxx = ẋxxF(uuu)+ ẋxx f (compare with the GENERIC framework, cf.
Sect. 8.3, and [54] for some more general considerations). A form including quite rel-
evant cases in the theory of complex fluids – where uuu represents the symmetry axis of
am uniaxial particle – is obtained using velocity ṙrr (or friction force ζζζ · ṙrr, with trans-
lational diffusion matrix DDD and friction matrix ζζζ ≡ kBT DDD−1) [74, 94, 216, 313, 314]

ṙrr = − DDD
kBT

·∇
(

δF [ f ]
δ f (rrr,uuu)

)
+ ṙrr f ⇔ ζζζ · ṙrr = −∇

(
δF [ f ]

δ f (rrr,uuu)

)
+ζζζ · ṙrr f , (11.7)

and angular velocity (featuring the angular operator LLLL instead of ∇, with rotational
diffusion matrix DDDDD and friction matrix ξξξ ≡ kBTDDDDD−1)

ωωω = − DDDDD
kBT

·LLLL
(

δF [ f ]
δ f (rrr,uuu)

)
+ωωω f , u̇uu = − DDDDD

kBT
· ∂

∂uuu

(
δF [ f ]

δ f (rrr,uuu)

)
+ u̇uu f (11.8)

and free energy functional F , entropy S, potential U

F [ f ] = V [ f ]−T S[ f ] ,

S[ f ] = −kB

∫
f (uuu) ln f (uuu)d2u,

δF [ f ]
δ f (rrr,uuu)

= δ f F [ f ] = δ fV [ f ]+ kBT ln f . (11.9)

Here, V [ f ] is an arbitrary potential functional, and DDD and DDDDD are model dependent
diffusion tensors, which may depend on space rrr and orientation uuu. The entropic ln f -
terms ensure, with positive definite diffusion tensor, that the distribution function
relaxes to its equilibrium value, once the potential (V ) is removed. Inserting, (11.9)
into (11.8) gives

ωωω = − DDDDD
kBT

·LLLL(δ fV [ f ])− 1
f
DDDDD ·LLLL f +ωωω f , (11.10)

and further inserting (11.7) and (11.9) into (11.6) yields

∂ f
∂ t

= ∇ · ( f ζζζ−1 ·∇(δ fV [ f ]))+(∇ ·DDD− ṙrr f ) ·∇ f

+ LLLL· ( f ξξξ−1 ·LLLL(δ fV [ f ]))+(LLLL·DDDDD−ωωω f ) ·LLLL f , (11.11)
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with uuu-independent angular momentum ωωω f , rotary diffusion tensor DDDDD, friction tensor
ξξξ = kBTDDDDD−1, and functional V [ f ].

In the absence of external field, v̇vv f = 0, ωωω f = 0, the stationary solution of (11.11)
is

fstat =
1
Z

e−δ f V [ f ]/kBT , (11.12)

since LLLL fstat = − fstatLLLL(δ fV [ f ])/kBT . The denominator Z ensures proper normalizar-
ion 〈1〉 = 1.

11.2.1 Spatial Inhomogeneous Distribution

A common choice for a spatial homogeneous, anisotropic translational diffusion ma-
trix is

DDD =
(

D‖
kBT

uuu(2) +
D⊥
kBT

(111−uuu(2))
)

. (11.13)

For rodlike particles with large axis ratio r = a/b, where a and b are the semiaxes,
D‖ ≈ 2D⊥ ≈ kBT ln(a/b)/(2πηsa) with solvent viscosity ηs. For moderate axes ra-

tios, the affine transformation model [421] predicts D‖ = r−2/3 Dsp and D⊥ = r4/3 Dsp

with Dsp being the corresponding diffusion coefficient of spherical particles. This
paricular choice for DDD has been used, e.g. in [422] to derive anisotropic diffusion co-
efficients in nematic liquid crystals and in ferrofluids, and in [311] to express Frank
elasticity coefficients for nematic liquid crystals in terms of order parameters.

11.2.2 Flow Field

For the case of macroscopic, homogeneous flow, vvv(rrr) = κκκ ·rrr, and κκκ = (∇vvv)T (κκκ may
depend on time but not on position), we decompose κκκ = γγγ + ΩΩΩ into symmetric and
antisymmetric parts, with ΩΩΩ = (κκκ−κκκT )/2 and γγγ = (κκκ +κκκT )/2. Hence the rotational
part of velocity motion ṙrr f ≡ ΩΩΩ · rrr = ωωω f × rrr with vorticity

ωωω f ≡ (∇× vvv)/2, vvv(rrr) = κκκ · rrr, κκκ = (∇vvv)T (11.14)

cannot be adsorbed by a potential V [ f ]. This angular velocity corresponds with
the equation of deterministic (flow-induced) motion of the axis of an ellipsoid of
revolution

u̇uu = B(111−uuuuuu) · γγγ ·uuu+ωωω f ×uuu, (11.15)

where the first part2 can be adsorbed by a potential of the form (11.17) below, and
B is the shape factor of Sect. 7.2. This is obvious with the following decomposition
into irreducible tensors

2 The structure of the determinsitic part of motion, (11.15) is obvious from the following
argument: A rod QQQ (B = 1) affinely following the flow field obeys Q̇QQ = κκκ ·QQQ (so called
upper-convected motion), the axis QQQ of a disk (B = −1) obeys Q̇QQ = −κκκT ·QQQ (lower con-
vected motion, thus both QQQ’s remain perpendicular to each other, if they were once perpen-
dicular), and we further correct the corresponding equation for the pseudoaffine uuu, using
u2 = 1 for the unit vecctor uuu, i.e., u̇uu ·uuu = 0 leading to the term (γγγ : uuuuuu)uuu in (11.15).
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(111−uuu(2)) · γγγ ·uuu =
3
5

γγγ ·uuu− γγγ : uuu[3] . (11.16)

Section 10.5 has been used.

11.2.3 Spatial Homogeneous Distribution, Nth Order Potential

For anisotropic bulk fluids we are often concerned with the homogeneous orienta-
tional (single-link, or single particle) distribution f (uuu, t).

A general Nth order (orientation-dependent) potential functional, with yet un-
specified (irreducible, without any restriction) tensors TTT [l] of rank l is

V [ f ] = kBT
N

∑
l=1

TTT [l] �l
∫

uuu[l] f (uuu)d2u

= kBT
N

∑
l=1

TTT [l] �l aaa[l] , (11.17)

such that
δV [ f ]
δ f (uuu)

= kBT
N

∑
l=1

TTT [l]�l uuu[l] . (11.18)

Inserting (11.18) into the homogeneous part of (11.11) yields the Fokker–Planck
equation for the orientational distribution function f (uuu, t) with coefficients TTT [l] char-
acterizing the Nth order potential,

∂ f
∂ t

=
N

∑
l=1

LLLL· ( fDDDDD ·LLLL(TTT [l]�l uuu[l]))+(LLLL·DDDDD−ωωω f ) ·LLLL f . (11.19)

Since TTT [l] does not depend on orientation uuu of the particles, we use (10.35), to obtain

LLLL(TTT [l]�l uuu[l]) = −(2l +1)uuu×uuu[l+1]�l TTT [l] = −l uuu[l]�l ∆∆∆ (l,1,l)�l TTT [l] . (11.20)

Now assuming isotropic and orientation-independent diffusiion, DDDDD = DDDDD111, we sim-
plify (11.19) as follows

∂ f
∂ t

= −DDDDD
N

∑
l=1

lLLLL· ( f uuu[l] �l ∆∆∆ (l,1,l))�l TTT [l] +DDDDDLLLL2 f −ωωω f ·LLLL f , (11.21)

where the properties LLLL(TTT [l]) = 0, LLLL(∆∆∆ (l,1,l)) = 0, cf. Sect. 10.5 have been used to
simplify the expression.

Multiplication of the Fokker–Planck equation by uuu[l] and subsequent integration
over the unit sphere (averaging) yields coupled equations of change for the infi-
nitely many moments of f ; alignent tensors aaa[l] =

〈
uuu[l]

〉
. Many of them have been

used in this monograph. General analytic considerations are offered in Sect. 11.3.
Chapter 10 provides all necessary equations to derive the coupled equations easily
with the help of a symbolic programming language.
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11.2.4 Examples for Potentials and Applications

• Mean-field potentials:
TTT [l] ∝ aaa[l] (11.22)

used to describe the physics and phase transitions in liquid crystals, polymeric
liquid crystals [74,94,179,216,313,422], FENE-PM dumbbels (Sdc. 2.1), aniso-
tropic fluids (Landau-de-Gennes potentials), cf. Chap. 7 for applications. For the
case of strict uniaxial symmetry, even the most general mean-field potential of
the form (11.22) is equivalent with a mean-field potential of the order l = 3, i.e.,
Landau-de-Gennes type, in view of the Caley-Hamilton theorem, cf. Sect. 10.7
and the equation of motion for moments, cf. (11.26).

• Magnetic (tensor) field, such as for liquid crystals (due to head-tail symmetry,
the liquid crystal does not couple to the vector field HHH),

TTT [2] = −1
2

χa HHHHHH , (11.23)

• Magnetic (vector) field, such as for ferrofluid and magnetorheological fluids (the
magnetic moment is a vector and thus couples also to the magnetic field vector):

TTT [1] = −hhh = −µHHH/kBT , (11.24)

with hhh = hHHH/H, H = |HHH|, Langevin parameter h = µH/kBT , magnetic moment
µ , external magnetic field HHH, cf. Sect. 7.5 for applications.

• Flow (2nd rank tensor) field

TTT [2] = − 1
2DDDDD B ∇vvv = −τB ∇vvv (11.25)

with shape coefficient B = (1 − r2
p)/(1 + r2

p) for ellipsoids of revolution, cf.
Sect. 7.2, isotropic orientational diffusion coefficient DDDDD, and orientational relax-
ation time τ = 1/(2DDDDD), cf. Chaps. 6 and 7 for applications.

11.3 Coupled Equations of Change for Alignment Tensors

Let us consider as an application the implications of the quite general Fokker–Planck
equation (11.19) for the orientational distribution function in case of isotropic dif-
fusion matrix DDDDD = DDDDD111 to simplify notation. Multiplication of (11.19) – with TTT [l]
characterizing the potential – by uuu[l] and subsequent integration over the unit sphere
(averaging) yields coupled equations of change for the infinitely many moments of
f ; alignent tensors aaa[l] =

〈
uuu[l]

〉
. By applying rules of Chapt. 10 and some further

manipulation we see, that the equation of change for the nth moment aaa[n] in the pres-
ence of a potential (11.18) (defining TTT [l]) and vorticity ωωω f (11.14) can be cast into
the following form (which is one of the main results of this section),

∂
∂ t

aaa[n] = n ωωω f ×aaa[n] −DDDDDn(n+1)aaa[n] +DDDDD
N

∑
l=1

l
l

∑
j=0

αn
l j TTT [l]� j aaa[n+2 j−l] , (11.26)
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with coefficients αn
l j nonzero only for n > 0, l = 1, ..,N and j = 0,1, ..l, and the con-

vention � jaaa[0] = 1. We derived the result (11.26) by performing a partial integration
for all terms on the right hand side of the integrated (11.19). Further, (10.36) and
(10.24) have been used to derive the first two terms on the right hand side of (11.26).
The term exhibiting the still unspecified coefficients αn

l j in (11.26) covers all possi-
ble combinations to couple the tensor TTT [l] with alignment tensors while producing
an irreducible tensor of rank n. This requirement is obvious, since the left hand side
of (11.26) is an irreducible tensor of rank n.3 Expressions for the coefficients are
obtained using the more explicit representation for the equation of change, derived
using methods of Chapt. 10, which leads to the following linear system of equations
for coefficients αn

l j:

∀n,l

l

∑
j=0

αn
l j TTT [l]� j aaa[n+2 j−l]

= −
〈
LLLL(TTT [l]�l uuu[l]) ·LLLLuuu[n]

〉
(11.28)

= − 1
kBT

〈
LLLL
(

δV [ f ]
δ f (uuu)

)
·LLLLuuu[n]

〉
(11.29)

= − 1
kBT

〈(
∂

∂uuu
δV [ f ]
f (uuu)

)
· ∂

∂uuu
uuu[n]

〉
(11.30)

= −(2n+1)(2l +1)
〈((

uuu×uuu[l+1]
)
�l TTT [l]

)
· (uuu×uuu[n+1])

〉
, (11.31)

which can be rewritten in components using the ∆∆∆ (l,1,l)-operator (10.18). The three
interior lines in 11.31 are just identities which help to identify identical structures
from equations in the literature.4 For the cases discussed in this monography, which
include potentials of the form (11.18) with N = 1 (magnetic vector field TTT [1]) and

3 In (7.34) we obtained a structure similar to the one in (11.26). By comparing these equa-
tions we see, that the derivative of the Landau-de Gennes potential with respect to the
alignment tensor of rank 2, ΦΦΦ , has to be identified as follows

ΦΦΦ = ϑaaa[2] −3
√

6 aaa[2]
2 +2a2 aaa[2]

↔ Dτa(6aaa[2] −2α2
20TTT [2] −2α2

21 TTT [2] ·aaa[2] −2α2
22 TTT [2] : aaa[4] ) . (11.27)

Therefore, TTT [2] ∝ aaa[2] and the fourth rank alignment tensor is virtually replaced by a clo-
sure relationship to arrive at the Landau-de Gennes potential (which prevents a coupling
between 2nd rank and 3th rank alignment tensors in the moment equation (7.34).

4 For example, for n = 2 (equation of change for the 2nd moment) and l = 2 (anisotropic
flow gradient), we can use the identity

(
∂

∂uuu
U

)
· ∂

∂uuu
aaa[2] =

(
∂

∂uuu
U

)
· (−2uuuuuuuuu+111uuu+ iiiuuuiii) =

(
∂

∂uuu
U

)
uuu+uuu

∂
∂uuu

U , (11.32)

valid for arbitrary scalar function U to arrive at the representation used in (7.9).

( )
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N = 2 (deformation rate tensor, alignment tensor TTT [2]), cf. Sect. 11.2.4, the solutions
of (11.31) are, after some calculation,

αn
10 =

n+1
2n+1

,

αn
11 = −1 ,

αn
20 =

n2 −1
4n2 −1

,

αn
21 =

6
2n+3

,

αn
22 = −2 .

(11.33)

At this point the reader may wish to convince her/himself, that the special case n = 1
and l = 1,2, by inserting (11.33) into (11.26) returns the equation of change for the
magnetization of ferrofluids (7.32). The special cases n = 2,4,6 and l = 2 are the
most relevant for polymer melts subjected to flow.

11.3.1 Dynamical Closures

With the form (11.26) at hand, it is easy to implement closure relationships which
are simultaneously correct close to equilibrium, and in the fully oriented state. We
need just to set aaa[k] = 000 for a certain k to obtain a systematic and ‘admissible’ set of
closures of order k. An example for k = 6 is given in Sect. 6.3.

While the Fokker–Planck equation is a partial differential equation, which may
be solved in different ways, including discrete methods, expansion methods (see
Sect. 6.3 for a worked out example), finite element methods etc. it is important to
know about the alternative way to look at these equations as being equivalent with
stochastic differential, so called Langevin equations to be presented in the next sec-
tion. The current section offered coupled equations of change for alignment tensors,
and strategies to close the system.

11.3.2 Equations of Change for Order Parameters

Assuming uniaxial symmetry of the alignment tensor, the simplest way to write down
equations of change for the order parameters is to use the representation (10.41),
which implies, for all n ≥ 0,

SnṠn =
1
2

d
dt

(S2
n) =

(2n−1)!!
n!

aaa[n]�n ∂
∂ t

aaa[n] . (11.34)

We then replace (∂/∂ t)aaa[n] by the expression given in (11.26) and perform the n-fold
contraction. To this end, we make use the trivial identity

∀n,k nnn[n]nnn[k] = nnn[n+k] (11.35)
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and of our formula (10.29) upon replacing uuu(l) by the director nnn(l),
5 which becomes

nnn[l]�l nnn[l+k] =
(l + k)!(2k−1)!!
k!(2l +2k−1)!!

nnn[k] . (11.36)

With the help of (11.35) and (11.36), (11.26) we evaluate (11.34) as

Ṡn =
(2n−1)!!

n!

(
nSn ωωω f ×nnn[n] �n nnn[n]−DDDDDn(n+1)Snnnn[n] �n nnn[n]

+ DDDDD
N

∑
l=1

l
l

∑
j=0

αn
l jSn+2 j−l TTT [l] � j nnn[n+2 j−l] �nnn[n]

)

= −DDDDDn(n+1)Sn +

1

n2
[n]

(

DDDDD
N

∑
l=1

l
l

∑
j=0

αn
l jSn+2 j−l TTT [l]� j nnn[n+2 j−l] �nnn[n]

)

,

(11.37)

with the coefficients αn
l j given by (11.33), generally defined through (11.31), and we

have used the identity6

ωωω f ×nnn[n] �n nnn[n] = 0 (11.39)

and the abbreviation

n2
[n] ≡ nnn[n] �n nnn[n] =

n!
(2n−1)!!

, (11.40)

a relationship derived earlier in this monograph. Equation (11.37) is the main result
of this section, the equation of change for nematic order parameters S1,S2, ... for the
Fokker–Planck equation (11.19) with a potential of the form (11.18).

For the case l = 1 (‘ferrofluid’), we use the identities

TTT [1]nnn[n−1] �n nnn[n] = n2
[n](TTT ·nnn) , (11.41)

TTT [1] ·nnn[n+1] �n nnn[n] = n2
[n+1](TTT ·nnn) , (11.42)

5 Notice, that we can replace the unit vector uuu by nnn in this formula, and uuu(l) by nnn(l), but we
cannot replace uuu(l) by aaa(l) since the alignment tensor is an averaged quantity. For the case
of uniaxial symmetry, this different transformation behavior between the average aaa[l] and
the dyadics nnn[l] is captured by the order parameters.

6 Some further identities to facilitate the comparison with equations presented in Part I of
this monograph:

γγγ ·nnn[2] : nnn[2] =
1
3

nnn[2] ,

γγγ : nnn[4] : nnn[2] =
12
35

nnn[2] , (11.38)

with traceless, symmetric γγγ .
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to specialize the general result (11.37), and explicitly write down the equations of
motion for all order parameters. Here, for l = 1, they couple to the director field
via vorticity ωωω f and vector field TTT [1]. The general case l > 1 can be handled in
straightforward manner.

11.4 Langevin Equation

Langevin equations can be regarded as alternative, equivalent approach to determine
the distribution function governing the Fokker–Planck equation from the previous
section. Both equations produce the same moments, and thus, the same distribution
function. We won’t go into detail here but refer the reader to [54, 368] for details on
stochastic variables and Langevin equations, in general.

A Langevin equation for the stochastic variable XXXt is often introduced as

dXXX
dt

= AAA(XXX)+BBB · η̃ηη , BBB ·BBBT ≡ D̃DD , (11.43)

with a deterministic part AAA, plus some kind of stochastic (usually white) noise ηηη .
Using the Itó interpretation for mixed moments of the type 〈η̃ηηXXX〉 it has been shown
that (11.43) is equivalent to the Fokker–Planck equation for the distribution f (xxx, t)
of the form

∂
∂ t

f (xxx, t) = −∇xxx · (AAA(xxx) f )+
1
2

∇xxx · (D̃DD ·∇xxx f (xxx, t)) , (11.44)

which immediately compares with (11.11) by identifying AAA = ẋxx f −ξξξ−1 ·δ fV [ f ] and
D̃DD = 2DDD, with xxx = uuu and xxx = rrr.

While macroscopic quantities 〈Q〉 (in particular, moments) are obtained from the
solution f (xxx, t) of (11.44) as

〈Q(xxx)〉(t) =
∫

f (xxx, t)Q(xxx)dxxx , (11.45)

the Langevin equation can be solved using random numbers, cf. Sect. 9, and macro-
scopic quantities after obtained from time series. After N time steps, let t = N
t,
one estimates

〈Q〉(t) =
1
N

N

∑
i=1

Q(XXX(i
t)) , (11.46)

with a statistical error

σ2(t) =
1
N

[
〈
Q2〉−〈Q〉2] =

1
N2

N

∑
i=1

[Q(XXX(i
t))−〈Q〉]2 . (11.47)
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11.4.1 Brownian Dynamics Simulation

Brownian dynamics simulation solves the Langevin equation (11.43) by discrete in-
tegration in time (time step 
t)


XXXt = AAA(XXXt , t)
t +
ΩΩΩ ,


ΩΩΩ = BBB ·ηηη
√


t, white noise ηηη , (11.48)

which ensures the required properties

〈
W〉 = 0 ,
〈
(
ΩΩΩ)2〉 = D̃DD
t . (11.49)

A sample brownian dynamics code (including nonequilibrium brownian dynamics)
is given in Sect. 12.6.1.

If BBB is constant, and AAA linear in xxx, there is no need to perform a simulation, the
solution is analytically known [368].
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Simple Simulation Algorithms
and Sample Applications

This section offers basic recipes and sample applications which allow the reader
to immediately start his/her own simulation project on topics we dealt with in this
book. Concerning molecular dynamics and Monte Carlo simulation there are, of
course, several useful books already available which describe the ‘art of simula-
tion’ [141, 156, 256] in an exhaustive way. The reason we print some simple codes
is that we skipped algorithmic details in the foregoing chapters. Simulations are al-
ways performed using dimensionless numbers, and all dimensional quantities can be
expressed in terms of reduced units, cf. Sect. 4.3 for conventional Lennard–Jones
units. In this chapter, we concentrate on the necessary, and skip anything more so-
phisticated. Codes have been used in classrooms, they are obviously open for modi-
fications and extensions, and offer not only an executable, but all necessary formulas
for doing simulations in the correct (which is often essential) order. The overall spirit
is as follows: codes are short, run without changes, demonstrate the main principle
in a modular fashion, and are thus in particular open regarding efficiency issues and
extensions. Algorithms are presented in the MatlabTM language, which is mostly di-
rectly portable to programming languages like fortran, c, or MathematicaTM. For an
introduction we refer to [423]. Additional commands needed to visualize the results
are given in the figure title for each application. Simulation codes, in a less mod-
ular fashion, are also available online at www.complexfluids.ethz.ch. Functions are
shared over sections, for that reason we begin with an alphabetic list of all (non-
builtin) functions in this chapter.

Martin Kröger: Models for Polymeric and Anisotropic Liquids, Lect. Notes Phys. 675, 181–196 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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12.1 Index of Programs

Table 12.1 provides a list of functions contained in this chapter.

Table 12.1. These and further codes are also available at www.complexfluids.ethz.ch. Codes
werewritten by the author of this book, and if distributed, should be supplemented by the
following line which we skip here to save space:
% jan 2005 written by martin kroger, mk@mat.ethz.ch

Function Section Function Section

all interactions 12.4.1 coeff 12.6.2
all interactions shear 12.5.1 energy flip 12.3.2
boundary periodic 12.2.2 f 12.3.1
boundary periodic centered 12.2.2 force FENE 12.4.2
boundary periodic pore 12.5.2 force LJ 12.4.1
boundary periodic shear 12.5.1 force LJ wall 12.5.2
boundary reflection 12.2.2 force basiscell 12.5.2
brownian propagate 12.6.1 forces 12.4.1
coarse grain 12.7.1 forces shear 12.5.1
code MC standard 1D 12.3.1 init basiscell 12.5.2
code MC standard 1D howto 12.3.1 random vector 2D 12.2.1
code NEMD 12.5.1 random vector 3D 12.2.1
code NEMD howto 12.5.1 random vector howto 12.2.1
code brownian dynamics howto 12.6.1 random walk 2D 12.2.1
code chebyshev 12.6.2 random walk 3D 12.2.1
code chebyshev howto 12.6.2 temperature control 12.4.1
code coarse grain howto 12.7.1 temperature control pore 12.5.2
code equilibrium FENE 12.4.2 temperature control shear 12.5.1
code equilibrium FENE howto 12.4.2 useful initial configuration 12.2.3
code flow through pore 12.5.2 useful initial configuration pore 12.5.2
code flow through pore howto 12.5.2 velocity verlet 12.4.1
code ising 2D 12.3.2 velocity verlet FENE 12.4.2
code ising 2D howto 12.3.2 velocity verlet pore 12.5.2
code molecular dynamics howto 12.4.1 velocity verlet shear 12.5.1
coeff 12.6.2 visualize particles 12.2.4

12.2 Recipes

12.2.1 Random Vectors, Random Paths (2D, 3D)

Create isotropically distributed vectors of given norm (length) in 2 and 3 dimensions.
Such vectors are needed to generate initial, polymeric (random walk) configurations.



12.2 Recipes 183

———————— main routine ————————

function random vector 3D= random vector 3D (veclength) 3D random vector of length veclength
znorm=1;
while znorm >= 1, z=1-2*rand(1,2); znorm=sum(z.*z); end; accept suitable
random vector 3D=veclength*[2*z*sqrt(1-znorm) 1-2*znorm]; scale unit vector

function random vector 2D= random vector 2D (veclength) 2D random vector
phi=rand*2*pi; random angle
random vector 2D=veclength*[cos(phi) sin(phi)]; scale unit vector

function x= random walk 3D (N,xstart) 3D random walk with N nodes starting at xstart
x=zeros(N,3); x(1,:)=xstart; for i=2:N, x(i,:)=x(i-1,:)+random vector 3D(1); end;

function x= random walk 2D (N,xstart) 2D random walk with N nodes starting at xstart
x=zeros(N,2); x(1,:)=xstart; for i=2:N, x(i,:)=x(i-1,:)+random vector 2D(1); end;

——– sample application, embedding & testing ——–

function random vector howto (N)
uu=zeros(3,3); for i=1:N, U=random vector 3D(1); UU=U’*U; uu=uu+UU; end; 3D case
3*uu/N, average over N realizations (3x3 unity matrix)
uu=zeros(2,2); for i=1:N, U=random vector 2D(1); UU=U’*U; uu=uu+UU; end; 2D case
2*uu/N, aberage over N realizations (2x2 unity matrix)

12.2.2 Periodic and Reflecting Boundary Conditions (nD)

Transformation rules for particles reaching or crossing boundaries of the simulation
cell. The same rules are used to employ the nearest image convention.

———————— main routine ————————

function x= boundary periodic (x,xmin,xmax) peridic bounds:
L = xmax-xmin; x = x-round((x-xmin)./L-0.5).*L; box size (L), xmax+eps -> xmin+eps etc.

function x= boundary periodic centered (x,L) periodic bounds:
x = x-round(x./L).*L; if box centered at origin, L/2+eps -> -L/2+eps etc.

function x= boundary reflection (x,xmin,xmax) reflecting bounds:
dummy = min(xmax,max(xmin,x)); x = 2*dummy-x; xmax+eps -> xmax-eps etc.

——– sample application, embedding & testing ——–

see code ising 2D
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for i=1:1000; U=random_vector_3D(1); plot3(U(1),U(2),U(3)); hold on; end;

generated output (Sect. 12.2)

12.2.3 Useful Initial Phase Space Coordinates (nD)

Create the coordinates for an isotropic, off-lattice bulk configuration with a minimum
(given) distance between all pairs of particles. The presented approach fails at very
high densities, but is sufficiently efficient at moderate densities.

———————— main routine ————————

function [x,v]= useful initial configuration (N,d,T,L,min sep)
particles (N), dimension (d), temperature (T), box size (L), min. separation (min sep),
x=L*(rand(N,d)-1/2); start with random positions, box centered at 0
[no,pair,connector]=all interactions(N,d,x,L,min sep); you may set loop=0 here
while no > 0, loop until minimum separation is achieved. method:
for i=1:no, simple steepest gradient method (choose step length)
x(pair(i,1),:)=boundary periodic(x(pair(i,1),:) - 0.3*connector(no), -L/2,L/2);
x(pair(i,2),:)=boundary periodic(x(pair(i,2),:) + 0.3*connector(no), -L/2,L/2);
end;
[no,pair,connector]=all interactions(N,d,x,L,min sep);
end; and add here: loop=loop+1; figure(1); plot(loop,no,’.’); hold on;
v=temperature control(N,d,rand(N,d)-0.5,T); uniformely distributed random v’s
vcm=sum(v)/N; for k=1:d, v(:,k)=v(:,k)-vcm(k); end; ensure center of mass vcm=0

——– sample application, embedding & testing ——–

see molecular dynamics

12.2.4 Visualization, Animation & Movies (nD)

Visualize N points (1D), circles (2D), spheres (3D) with given radius at given po-
sitions. Visualize a single unfolded chain in 2D and 3D as thick path. Avi movies



12.3 Monte Carlo 185

can be generated in MatlabTMvia M=avifile(‘file.avi’), .., figure(1), F=getframe;
M=addframe(M,F), . . . figure(1), M=addframe(M,F), .. and M=close(M). See www.co-
mplexfluids.ethz.ch for worked out examples.

———————— main routine ————————

function visualize particles (N,d,x,L,resolution,r,mytitle) visualize N spheres, radius r, at positions x
[X,Y,Z]=sphere(resolution); figure(1); hold off; in 1,2,3D. parameters: radius (r), box size
(L)
if d==3, for i=1:N, surf(X*r+x(i,1),Y*r+x(i,2),Z*r+x(i,3)); hold on; end; end;
if d==2, for i=1:N, surf(X*r+x(i,1),Y*r+x(i,2),0*X); view(2); hold on; end; end;
if d==1, for i=1:N, surf(X*r+x(i,1),Y*r ,0*X); view(2); hold on; end; end;
axis([-L L -L L -L L]/2); title(mytitle); pause(0.001); customize axes and title, pause

——– sample application, embedding & testing ——–

The visualization routine can be added within most of the codes of this chapter.
Create animations/movies by using getframe and frame2avi matlab commands.

12.3 Monte Carlo

12.3.1 Standard Monte Carlo Integration (nD)

Evaluate the integral
∫

f (x)dx by using (pseudo) random numbers, cf. 9.2.1. The
code is immediately adopted to compute high-dimensional integrals for which Monte
Carlo methods (or quasi Monte Carlo methods using quasi random numbers) are the
method of choice. The error scales with the number of N realizations for random
numbers as N−1/2 independent of the dimensionality of the integral.

———————— main routine ————————

function [I,E]= code MC standard 1D (N,a,b) integral I, error estimate E
X =a + (b-a)*rand(1,N); N random X values in [a,b]
F =f(X); corresponding f values
I =(b-a) /N*sum(F); Integral estimate
I2=(b-a)ˆ2/N*sum(F.*F); E =sqrt((I2-Iˆ2)/N); Error estimate
This 1D example is immediately adopted for high-dimensional integration

——– sample application, embedding & testing ——–

function code MC standard 1D howto (N,a,b) N random shots, integral bounds [a,b]
N=10, a=0, b=1, [Integral,Error]=code MC standard 1D(N,a,b), (π)

function f= f (x) specifies integrand
f=4*sqrt(1-x.ˆ2); sample integrand ->

∫
f(x) dx = π (a=0 & b=1)
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for N=1:500, plot(N,code_MC_standard_1D(N,a,b)); hold on; end;

1D integration to estimate π

generated output (Sect. 12.3)

12.3.2 Ising Model via Metropolis Monte Carlo (2D)

Numerically solve the Ising model with Hamiltonian H = −B∑i xi − J
2 ∑〈i, j〉 xix j,

spins xi ∈{−1,+1} on a two-dimensional (L×L) lattice, for which the exact analytic
(Onsager) solution is known for L → ∞. In particular, the phase transition isotropic -
magnetic occurs at the critical, inverse dimensionless temperature βJ = 0.4406868.
Implement the Metropolis method of Chap. 9.1

———————— main routine ————————

function code ising 2D (beta,N); Metropolis scheme
global L x; shared, ‘global’ variables
RANDOMSITE = randint(N,2,[1 L]); cpu efficient, but
RANDOMNUMBER = rand(N,1); memory consuming
for i=1:N, site=RANDOMSITE(i,:); choose site randomly
if RANDOMNUMBER(i) < exp(-beta*energy flip(site(1),site(2))),
x(site(1),site(2))=-x(site(1),site(2)); end; flip site
end;

function energy flip= energy flip (sx,sy);
global J H x; sum n = xs(sx+1,sy)+xs(sx-1,sy)+xs(sx,sy+1)+xs(sx,sy-1); sum over neighbors
energy flip = 2*x(sx,sy)*(H+J*sum n); Ising Hamiltonian

function xs= xs (sx,sy); global L x; periodic boundary conditions
site = boundary periodic([sx sy],1,L); a routine of this section
xs = x(site(1),site(2)); spin at corrected coordinate (site)

——– sample application, embedding & testing ——–

function code ising 2D howto (L,J,H,beta); lattice size L (30), coupling coefficient J (0.43)
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global L J H x; magnetic field H (0), 1/kT (1)
x=2*round(rand(L,L))-1; initial random LxL lattice x=-1 or x=+1
N=3000; code ising 2D(beta,N); perform N Monte Carlo steps
M=mean(x(:)), calculate magnetization <x>
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pcolor(x)

generated output (Sect. 12.3)

12.4 Molecular Dynamics

12.4.1 Molecular Dynamics of a Lennard–Jones System (nD)

Calculate phase space trajectories for a system of mass points interacting via given
two-body interaction forces (Lennard–Jones, for example). Employ the velocity Ver-
let algorithm to integrate the equations of motion and a introduce a thermostat, cf.
Sect. . .

———————— main routine ————————

function [x,v,F]= velocity verlet (N,d,x,v,F,dt,L,cutoff) velocity Verlet integrator
x = boundary periodic(x + dt*v + dtˆ2/2*F,-L/2,L/2); new x with boundary conditions
v = v + dt/2*F; F = forces(N,d,x,L,cutoff); v = v + dt/2*F new v, new forces, new v

function [ip,pair,connector]= all interactions (N,d,x,L,cutoff) obtain interacting pairs
ip=0; connector=zeros(1,d); pair=zeros(1,2);
for i=1:N-1, for j=i+1:N,
distance = boundary periodic(x(j,:)-x(i,:),-L/2,L/2); (true) connecting vector x j-x i
if norm(distance) < cutoff, only interacting pairs (cutoff+shell for neighbor lists)
ip = ip + 1; interaction pair counter
pair(ip,:) = [i j]; particle numbers (i,j) belonging to pair (ip)
connector(ip,:) = distance; end; connecting vector x j - x i for pair (i,j)

4 1
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end; end; end both ‘for’ loops
function F= forces (N,d,x,L,cutoff) clear forces F, then calculate them using ..

F=zeros(N,d); [no,pair,connector]=all interactions(N,d,x,L,cutoff); interacting pairs
for i=1:no, FORCE=force LJ(connector(i,:));
F(pair(i,1),:)=F(pair(i,1),:)-FORCE; F(pair(i,2),:)=F(pair(i,2),:)+FORCE; actio=reactio
end;

function v= temperature control (N,d,v,T) rescaling velocities according ‘wanted’ temperature
T measured=sum(v(:).ˆ2)/(d*N); v=v*sqrt(T/T measured);

——– sample application, embedding & testing ——–

function code molecular dynamics howto (N,d,n,T,dt,MDsteps,cutoff,min sep) N (10) particles,
dimension d (1-3), particle number density n (0.5), temperature T (1),

integration time step dt (0.005), time steps MDsteps (2000), cutoff (2.5)
L=(N/n)ˆ(1/d); min sep =0.85; box size (L), minimum pair separation at startup (min sep)
[x,v] =useful initial configuration(N,d,T,L,min sep); init. coordinates x,
F =forces(N,d,x,L,cutoff); velocities v and forces F
for MDstep=1:MDsteps, molecular dynamics loop
[x,v,F]=velocity verlet(N,d,x,v,F,dt,L,cutoff); propagate trajectory
v =temperature control(N,d,v,T); velocity rescaling
end;

function force LJ= force LJ (r vector); r=norm(r vector); two-body force
force LJ = 24*(2*r.ˆ(-14)-rˆ(-8)) * r vector; here: Lennard–Jones
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generated output (Sect. 12.4)

12.4.2 Associating Equilibrium FENE Polymers (2D,3D)

Calculate phase space trajectories for a system made of interacting mass points. Be-
low a threshold distance, pairs of particles combine to form a segment of a (linear or
branched) polymeric chain.

———————— main routine ————————

function code equilibrium FENE (N,d,x,v,L,cutoff,MDsteps,dt,T,Qmax FENE,k FENE)
total number of beads (N), space dimension (d), phase space coordinates (x,v),
box size (L), potential cutoff (cutoff), MD steps (steps), time step (dt), temperature
(T), FENE spring coefficient (k FENE), FENE max. extension (Qmax FENE)
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global QmaxFENE kFENE bonds
QmaxFENE=Qmax FENE; kFENE=k FENE; time=0; F=forces(N,d,x,L,cutoff);
for MDstep=1:MDsteps, time=time+dt; molecular dynamics loop
[x,v,F]=velocity verlet FENE(N,d,x,v,F,dt,L,cutoff); propagate trajectory
v =temperature control(N,d,v,T); velocity rescaling
end;

function force FENE= force FENE (r vector) FENE force
global QmaxFENE kFENE
r2=sum(r vector.ˆ2); force FENE = kFENE*r vector/(1-r2/QmaxFENEˆ2);

function [x,v,F]= velocity verlet FENE (N,d,x,v,F,dt,L,cutoff) velocity Verlet integrator
global pol QmaxFENE kFENE
x = boundary periodic(x + dt*v + dtˆ2/2*F,-L/2,L/2); new x
v = v + dt/2*F; new v
F = forces(N,d,x,L,cutoff); LJ forces
for i=1:N, FENE forces between neighbors along pol backbone
j=pol(i,1); if j>0, FF=force FENE(pol(i,3:5)); F(i,:)=F(i,:)+FF; F(j,:)=F(j,:)-FF; end;
j=pol(i,2); if j>0, FF=force FENE(pol(i,6:8)); F(i,:)=F(i,:)+FF; F(j,:)=F(j,:)-FF; end;
end;
v = v + dt/2*F; new v

function [ip,pair,connector]= all interactions (N,d,x,L,cutoff) obtain interacting pairs
global pol QmaxFENE bonds
ip=0; connector=zeros(1,d); pair=zeros(1,2); C1=3:(2+d); C2=2+d+(1:d);
for i=1:N-1, for j=i+1:N,
distance = boundary periodic(x(j,:)-x(i,:),-L/2,L/2); (true) connecting vector
if norm(distance) < cutoff, collect interacting pairs
ip = ip + 1; interaction pair counter
pair(ip,:) = [i j]; particle numbers (i,j) belonging to pair (ip)
connector(ip,:) = distance; connecting vector x j - x i for pair (i,j)
end;
if norm(distance) < 1, polymerization distance (USER)
if pol(i,2)+pol(j,2)==0 & pol(i,1) ˜= j, check for single free, new neighbor
if pol(i,1) ˜= pol(j,1) — pol(i,1) == 0, prevent stable trimers
pol(i,[2 C2])=pol(i,[1 C1]); keep first neighbor
pol(i,1)=j; add new neighbor
end; end;
end
if pol(i,1) == j, pol(i,C1)=distance; end; update connectors for
if pol(i,2) == j, pol(i,C2)=distance; end; all existent neigbhors
end; end;
bonds=(sum(sign(pol(:,1)))+sum(sign(pol(:,2)))), # of FENE bonds (increasing with time)



190 12 Simple Simulation Algorithms and Sample Applications

——– sample application, embedding & testing ——–

function code equilibrium FENE howto
global pol;
N=20; d=3; L=10; pol=zeros(N,8); bead no., max. 2 neighbor sites, connector vectors
[x,v]=useful initial configuration(N,d,1,10,0.9);
code equilibrium FENE(N,d,x,v,L,2ˆ(1/6),1000,0.005,1,1.5,30);

equilibrium polymers
wormlike micelles

generated output (Sect. 12.4)

12.5 NonEquilibrium Molecular Dynamics

12.5.1 NonEquilibrium Molecular Dynamics (nD)

Calculate phase space trajectories for a system of interacting mass points subjected
to shear flow at given rate, cf. Sect. 4.1.

———————— main routine ————————

function [x,v]= code NEMD (N,d,L,x,v,n,T,dt,MDsteps,cutoff,shearrate),
number of particles (N), space dimension (d>1), bos xize (L), number density (n),

temperature (T), integration time step (dt), time steps (MDsteps),
interaction potential cutoff distance (cutoff), shear rate (shearrate)

F=forces shear(N,d,x,L,cutoff,0,0); initialize forces
for time=0:dt:dt*MDsteps, molecular dynamics loop
[x,v,F]=velocity verlet shear(N,d,x,v,F,dt,L,cutoff,shearrate,time); trajectory
v =temperature control shear(N,d,x,v,T,shearrate); NEMD velocity rescaling
visualize particles(N,d,x,L,20,0.5,[’t=’ num2str(time)]); optionally
end;

function [x,v,F]= velocity verlet shear (N,d,x,v,F,dt,L,cutoff,shearrate,time) integrator
x = boundary periodic shear(x + dt*v + dtˆ2/2*F,L,shearrate,time); new x
v = v + dt/2*F; F = forces shear(N,d,x,L,cutoff,shearrate,time); v = v + dt/2*F; id MD
v(:,1) = v(:,1)-round(x(:,2)./L).*shearrate*L; shift v and x upon leaving

function F= forces shear (N,d,x,L,cutoff,shearrate,time) forces using interacting pairs
identical with routine forces, except

all interactions replaced by all interactions shear(N,d,x,L,cutoff,shearrate,time)
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function [ip,pair,connector]= all interactions shear (N,d,x,L,cutoff,shearrate,time)
identical with routine all interactions, except

boundary periodic() replaced boundary periodic shear(x(j,:)-x(i,:),L,shearrate,time);
function v= temperature control shear (N,d,x,v,T,shearrate)

v(:,1)=v(:,1)-shearrate*x(:,2); peculiar velocities
T measured=sum(v(:).ˆ2)/(N*d); peculiar temperature
v=v*sqrt(T/T measured); rescale peculiar velocities
v(:,1)=v(:,1)+shearrate*x(:,2); recover true velocities

function x= boundary periodic shear (x,L,shearrate,time) assumes simulation box centered at origin,
box size L
x(:,1) = x(:,1)-round(x(:,2)./L).*shearrate*time*L; box in flow gradient direction
x = x-round(x./L).*L; fold back to box

——– sample application, embedding & testing ——–

function code NEMD howto (N,d,n,T,dt,MDsteps,cutoff,shearrate);
min sep =0.85; minimum particle separation kept by initial configuration
L=(N/n)ˆ(1/d); box size
[x,v] = useful initial configuration(N,d,T,L,min sep); initialize x and v
[x,v] = code NEMD(N,d,L,x,v,n,T,dt,MDsteps,cutoff,shearrate); NEMD
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generated output (Sect. 12.5)

12.5.2 Flow through Nanopore (3D)

Calculate phase space trajectories for a system of interacting mass points subjected
to flow through a circular pore with structured surface.

———————— main routine ————————

function code flow through pore (N,d,L,radius,cutoff,resolution,v wanted,...
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MDsteps,min sep,latconst,dt,T,wallcutoff)
number particles (N), box size (L), pore radius (radius), pot. cutoff (cutoff),
wall force (resolution), wanted mean flow velocity (v wanted), MD steps (steps),
minimum particle separation at startup (min sep), wall lattice constant
(latconst), time step (dt), temperature (T), pot. cutoff wall particles (wallcutoff)

fill wall force lattice on the fly (time/step thus reducing with time)
(c) 9 feb 2005 mk@mat.ethz.ch
global wallcutoff radius resolution v wanted latconst;
init basiscell(radius,L,latconst,resolution); prepare for wall force field
[x,v] =useful initial configuration pore(N,d,T,L,min sep); initialize x, v
v(:,1) =2*v wanted*(1-(x(:,2).ˆ2+x(:,3).ˆ2)/radiusˆ2); initial macro v profile
F=forces(N,d,x,L,cutoff); initial force
for MDstep=1:MDsteps, molecular dynamics loop
[x,v,F]=velocity verlet pore(N,d,x,v,F,dt,L,cutoff); propagate trajectory
v(:,1) =v(:,1)-mean(v(:,1))+v wanted; control <v x>
v =temperature control pore(N,v,T); 2D velocity rescaling
if mod(MDstep,10)==0, visualize particles(N,d,x,L,20,0.5,’mytitle’); end;
end;

function force= force basiscell (x,L); lookup or generate force field
global bin basislatticeforce g fullwall latconst radius fullwall;
i(1) =floor( mod(x(1),latconst)/g(1))+1; x onto grid
i(2:3)=floor(([x(2) x(3)]+radius)/g(2))+1; y,z onto grid
if basislatticeforce(:,i(1),i(2),i(3)), particle still inside tube?
force=basislatticeforce(:,i(1),i(2),i(3))’; lookup (3D) wall force field
else generate on the fly
force=force LJ wall([fullwall(:,1)-x(1) fullwall(:,2)-x(2) fullwall(:,3)-x(3)])’;
basislatticeforce(:,i(1),i(2),i(3))=force;
end;

function [x,v,F]= velocity verlet pore (N,d,x,v,F,dt,L,cutoff) veloc. Verlet integrator
x = boundary periodic(x + dt*v + dtˆ2/2*F,-L/2,L/2); new x with boundary conditions
v = v + dt/2*F; new v
F = forces(N,d,x,L,cutoff); new forces (bulk-bulk)
for i=1:N, F(i,:) = F(i,:)+force basiscell(x(i,:),L); end; new forces (bulk-wall)
v = v + dt/2*F; new v

function v= temperature control pore (N,v,T) rescaling 2D velocities
T measured =sum(v(:,2).ˆ2+v(:,3).ˆ2)/(2*N); v(:,2:3) =v(:,2:3)*sqrt(T/T measured);

function x= boundary periodic pore (x,L)
global radius
x(:,1) = x(:,1)-round(x(:,1)./L).*L; fold back to simulation cell
r = sqrt(x(:,2).ˆ2+x(:,3).ˆ2); all radial distances
init dist wall=1; initial min. distance from wall
W = find(r > radius-init dist wall); find all interacting sites
if W,
rW = (radius-init dist wall)*rand(length(W),1)./r(W);
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x(W,2) = rW.*x(W,2); x(W,3) = rW.*x(W,3); random fold back ..
end;

function [x,v]= useful initial configuration pore (N,d,T,L,min sep)
as useful initial configuration, but
replace boundary periodic(..,-L/2,L/2) by boundary periodic pore(..,L)

——– sample application, embedding & testing ——–

function code flow through pore howto
code flow through pore(10,3,10,4,2ˆ(1/6),20,0.5,1000,0.8,1,0.005,1,Inf) sample call

function force LJ wall= force LJ wall (R) specify bulk - fluid interaction force
global wallcutoff R is a N x d list of wall particle coords
r2 = sum(R’.ˆ2); N squared norms if R is N x d matrix
indices = find(r2 < wallcutoffˆ2); interacting indices
if indices, r2=r2(indices); obtain wall force from all interacting sites
fac = -24*(2-r2.ˆ4)./(r2.ˆ7); Lennard–Jones force (USER)
force LJ wall=[sum(fac.*R(indices,1)’);sum(fac.*R(indices,2)’);sum(fac.*R(indices,3)’)];
else force LJ wall = [0;0;0]; end;

function init basiscell (radius,L,latconst,resolution); specify wall particle sites
global bin basislatticeforce g fullwall latconst wallcutoff fullwall;
bin(1)=resolution; bin(2)=floor(bin(1)*radius/latconst)+1; grid sizes
basislatticeforce=zeros(3,bin(1),bin(2),bin(2)); tube x direction
g(1)=latconst/bin(1); g(2)=2*radius/bin(2); lattice constants
phi=latconst:latconst:2*pi*radius; phi=phi/radius; wall=[]; tube structure (USER)
for x=-L/2:latconst:L/2-latconst, tube structure (USER)
fullwall=[fullwall; x*ones(length(phi),1),radius*cos(phi’),radius*sin(phi’)];
end;
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generated output (Sect. 12.5)
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12.6 Brownian Dynamics

12.6.1 Brownian Dynamics of a Lennard–Jones System (nD)

Calculate phase space trajectories for a given Langevin equation, cf. Sect. 8.5.
———————— main routine ————————

function [x,F]= brownian propagate (N,d,x,dt,friction coeff,T,L,cutoff)
F = forces(N,d,x,L,cutoff); deterministic forces
x = x + F/friction coeff * dt + sqrt(2*T*dt/friction coeff) * randn(N,d) F + stochastic
x = boundary periodic(x,-L/2,L/2); convenient, but not necessary

——– sample application, embedding & testing ——–

function code brownian dynamics howto (N,d,n,T,dt,BDsteps,cutoff,friction coeff)
number of particles (N), dimension d (1-3), particle number density n (0.5), temperature T

(1),
integration time step dt (0.005), time steps BDsteps (2000), cutoff (2.5),

friction coefficient friction coeff (1)
L=(N/n)ˆ(1/d); min sep =0.85; box size (L), minimum pair separation at startup (min sep)
[x,v] =useful initial configuration(N,d,T,L,min sep); init. coordinates x,
F =forces(N,d,x,L,cutoff); velocities v and forces F
for BDstep=1:BDsteps, [x,F]=brownian propagate(N,d,x,dt,friction coeff,T,L,cutoff); end;

12.6.2 Hydrodynamic Interaction via Chebyshev Polynomials (3D)

Calculate Chebyshev approximation of a given positive definite matrix, at given ex-
pansion order. The recursion property of the Chebyshev polynomials is used to devise
simulation algorithms for the study of hydrodynamic interactions which scale with
N9/4 rather than N3 (Cholesky decomposition), where N is the number of interacting
sites, cf. Sect. 3.3.

———————— main routine ————————

function B= code chebyshev (H,N,L) B*B’=H with N x N positive definite matrix H, Chebyshev order
L

alternate direct method which scales with Nˆ3: B=chol(H)’
eigH=eig(H); a=min(eigH); z=max(eigH); min, max eigenvalues of H: a and z
bma=(z-a)/2; bpa=(z+a)/2; shifted HI = ha*H+hb*1
ha=1/bma; hb=-bpa/bma; Y=ha*H+hb*eye(N,N); transformation
C=cell(L); C1=eye(N,N); C2=Y; The C’s are Chebyshev’s
for i=1:L, Ci+2=2*Y*Ci+1-Ci; end; polynomials T(i)=C(i+1)
y=bma*cos(pi*((1:L)-0.5)/L)+bpa; shifted x
fH=sqrt(y); since B=sqrt(H)
B=-1/2*coeff(1,L,fH)*eye(N,N); Chebyshev reconstruction
for i=1:L, B=B+coeff(i,L,fH)*Ci; end;

function coeff= coeff (j,L,fH) Chebyshev coefficients
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coeff=sum(fH(1:L).*cos(pi*(j-1)*((1:L)-1/2)/L))*2/L;

——– sample application, embedding & testing ——–

function code chebyshev howto (R,L) rank (R>1), Chebyshev expansion order (L)
X=rand(1,R); R uniformely distributed random numbers in [0,1]
H=X’*X, generate sample pos. semidef. RxR (H) matrix
B=code chebyshev(H,R,L), approximation for B
H recalculated=B*B’ recalculate H using B

Note: Effcient implementation of these ideas in a brownian
dynamics code does not require explicitely calculating B!
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generated output (Sect. 12.6)

12.7 Coarse-Graining

12.7.1 Coarse-Graining Polymer Chains (nD)

Calculate the coarse-grained representation (parameterized by ξ ) of a given (atom-
istic) configuration of a linear polymer, cf. Sect. 8.10.1

———————— main routine ————————

function x= coarse grain (x,xi) returns coarse-grained x from atomistic x
if xi==0, x=x; return; end; parameterized by xi
N=length(x); y=zeros(N,3); number of nodes N, initialize y
m(1)=1+xi; for i=2:N-1, m(i)=(1+2*xi)-xiˆ2/m(i-1); end;
m(N)=1+xi-xiˆ2/m(N-1); calculate inverse band-diagonal matrix
y(1,:)=x(1,:); for i=2:N, y(i,:)=x(i,:)+xi*y(i-1,:)/m(i-1); end;
x(N,:)=y(N,:)/m(N); for i=N-1:-1:1, x(i,:)=(y(i,:)+xi*x(i+1,:))/m(i); end;
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——– sample application, embedding & testing ——–

function code coarse grain howto
N=200; x=random walk 3D(N,[0 0 0]); create random path with N=200 nodes
xi=20; x=coarse grain(x,xi); coarse-grained path (parameter xi)
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Concluding Remarks

The development of constitutive relationships which connect strain or strain rate with
stress and material behavior is at the heart of a successful macroscopic modeling
of complex fluids, and soft matter in general. We reviewed simple physical models
which allow to find such relationships for the case of neutral bulk polymeric fluids,
nematic fluids, ferrofluids, colloidal suspensions. We have shown that the simplest
approximate treatments (Chap. 2) such as the Peterlin approximation turn out to be
insufficiently precise. More detailed chain models which allow to capture molecular
architecture, finite extensibility, bending stiffness and interchain interactions without
approximation, on the other hand, are computationally expensive while remaining
conceptually simple (Chaps. 3–5). In order to predict rheooptic behaviors on time
and length scales relevant for applications chemical details are shown to be not es-
sential. These models serve to make progress towards appropriate decoupling ap-
proximations for stochastic differential equations, and a reduced description using
relevant (slow) variables (Chaps. 6–8). Most interestingly, they provide deep insight
into the microscopic origins of viscoelastic behavior.

This monograph contains an introduction to the microscopic modeling of aniso-
tropic, in particular, polymeric fluids involving FENE chain models, tube models,
and and elongated particle models and may serve as a starting point to devise appro-
priate models and to understand soft matter and nonequilibrium complex fluids as
encountered in applications and current experiments. We discussed several efficient
strategies to solve microscopic models such as the Cholesky decomposition or vari-
ance reduction methods for FENE solutions with HI. We provided examples which
demonstrated how to attack the non-analytical solvable models in approximate, and
less approximate fashion. Coarseing procedures have been applied to microscopic
trajectories onto objects which can be treated within the framework of primitive path
models. Using the coarsening procedure of Sect. 8.10.1 one should be able to extract
the parameters of tube models directly from atomistic simulation on the nanosecond
scale, i.e., small compared to the reptation time scale. Insight from the microscopic
FENE chain level – such as anisotropic tube renewal, stress-optic failures – have
been used to refine these theories and to work out consequences in Chap. 6. The rhe-
ological crossover observed for FENE chain melts allowed to discuss and interpret
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characteristic lengths scales in polymer melts. These scales can be expressed in terms
of density, molecular weight, and flexibilty, i.e. based on geometric or ‘topological’
quantities and independent of chemical details. The soft ellipsoid model [3, 424] is
another representative of a coarseing strategy from many monomers to many poly-
mers. Elongated (rigid) particle models have been characterized in detail and con-
nection was made to macroscopic description such as the EL theory for nematics. In-
homogeneous extensions of Fokker–Planck discussed in this monograph have been
studied, e.g., for liquid crystals in order to calculate elastic coefficients [311].

The formulation of new models for nonequilibrium fluids remains a difficult task
but should be guided through frameworks ensuring their thermodynamically admis-
sible, intrinsically consistent, description. The corresponding GENERIC approach
reviewed in Sect. 8.3 has not yet been extended to describe nonholonomic constraints
or boundary conditions. It may be interesting to show, e.g., how the simple model for
polymer melts considering anisotropic tube renewal (Sect. 6.2) may be cast into a
suitable generalized framework.

This monograph did certainly not provide sufficiently detailed information on
how to implement efficient and advanced simulations, but original articles for each
application have been cited, where missing details can be found. Chapter 12 fur-
ther reduced the gap by providing full simulation codes demonstrating various
simulation, visualization and animation techniques. Standard textbooks such as
[4,58,141,156,179,216] contain background and supplementary information on the
modeling of nonequilibrium fluids. An overview of some of the more popular com-
putational models and methods used today in the field of molecular and mesoscale
simulation of polymeric materials, ranging from molecular models and methods that
treat electronic degrees of freedom to mesoscopic field theoretic methods can be also
found in [3, 12, 425].
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Notation

14.1 Special Symbols

! Factorial (N! = 1×2×3×· ·×N and N!! = 1×3×· ·×N)
: Two subsequent tensorial products (: is equivalent with ··)
= Equal to (as a result of basic operations)
≈ Approximately equal to
〈〉 Ensemble or time average
· Scalar or tensorial product
≡ Left hand side defined as expression on right hand side
∝ Proportional to
∇ Gradient, sometimes labeled with the variable to avoid confusion
AAA (boldface) vector or tensor AAA, norm denoted as A
111 Unity matrix
AAABBB Dyadic product between AAA and BBB

AAA Anisotropic (symmetric traceless) part of tensor AAA
AAAsym Symmetric, normalized, part of tensor AAA
∇∇∇ Nabla-Operator (gradient with respect to spatial coordinates)
Ȧ Total derivative with respect to time, Ȧ = dA/dt
�l l-fold contratcion
Aµ µ-component of vector AAA
Aµν (µ ,ν)-component of 2nd rank tensor AAA

14.2 Tensor Symbols

uuu(l) ≡ uuuuuu..uuu [nnn(l) ≡ nnnnnn..nnn] (l-fold dyadics made of vector uuu, [director nnn],
tensor of rank l)

uuu[l] ≡ uuu(l) = uuuuuu . . .uuu , [nnn[l] = nnn(l) ] (anisotropic, symmetric traceless tensor)
aaa(l) ≡

〈
uuu(l)

〉
= 〈uuuuuu . . .uuu〉 (average value)

aaa[l] ≡
〈
uuu[l]

〉
=
〈

uuuuuu . . .uuu
〉

(so called alignment tensor of rank l)
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14.3 Upper Case Roman Symbols

B Shape factor for uniaxial, elongated particles (1: rod, 0: sphere, -1: disk)
BD brownian dynamics
BEMD Beyond-equilibrium molecular dynamics
C∞ characteristic ratio, cf. Sect. 4.5
D.. Diffusion coefficient (usually labeled by a model)
DE Doi-Edwards
DSMC Density of states Monte Carlo
E Energy
EL Ericksen-Leslie
FENE Finitely extendable nonlinear elastic
G′ (G′′) Storage (loss) modulus (G∗ = G′ + iG′′ = iωη∗)
GENERIC General equation for the nonequilibrium reversible-irreversible coupling
H Hookean spring coefficient
HHH External magnetic field
HHHi j Hydrodynamic interaction matrix
HL Hinch-Leal
111 Unit tensor of rank 3
In(AAA) nth order scalar invariant of mb f A defined in (10.58)
L Chain contour length
LLL GENERIC building block characterizing reversible dynamics
MC Monte Carlo
MD Molecular dynamics
MMM Magnetization
MMM GENERIC building block characterizing irreversible dynamics
N Number of beads within a single chain
NEMD Nonequilibrium molecular dynamics
Ne Entanglement number of beads (∝ entanglement molecular weight)
Nc Critical number of beads (∝ critical molecular weight)
Ns Number of solvent particles
Nt Total number of beads (polymer plus solvent)
Q Tube segment length
Q0 Maximum extension for FENE spring
QQQ,QQQ j Connector(s) between adjacent beads within primitive chain)

( j = 1 . . .N −1)

QQQ[l] = QQQQQQ..QQQ (irreducible tensor of rank l)
S Entropy
S1,2,.. Order parameters
uuu(l) = uuuuuu..uuu (dyadics of rank l)
T Temperature
Tr Trace with respect to an arbitrary pair of indices
TTT (k) Symmetry adapted basis tensors, 2.9, 2.112.12. k ∈ {0,1,2,3,4,Tr}
TTT .. Orienting torque entering the Fokker–Planck equation
WCA Weeks-Chandler-Anderson
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14.4 Lower Case Roman Symbols

a+,−,0 Shear flow adapted components of the alignment tensor, (6.2)
ak Components of the alignment tensor with respect to TTT (k)

aaa(l) =
〈
uuu(l)

〉
= 〈uuuuuu..uuu〉

aaa[l] Anisotropic alignment tensor (of rank l)
uuu[l] = uuu(l) = uuuuuu..uuu (irreducible tensor of rank l)
b FENE parameter (b = HQ2

0/kBT )
d Space dimension
f Orientational distribution function f (uuu, t)
gk Components of the gyration tensor with respect to TTT (k)

ggg Dimensionless anisotropic 2nd moment of f for FENE dumbbells
h Dimensionless Langevin parameter characterizing magnetic field
iii ‘Symbolic half’ unity matrix, 111 = iiiiii
kB Boltzmann constant kB = 1.38×10−23 J K−1

m Bead mass
n Bead number density: number of beads per volume
nmax Maximum birefringence (chemistry dependent)
np Polymer number density (np = n/N for monodisperse systems)
nnn Director in the EL theory
p.. Orientational distribution, statistical weighting factor
r Axis ratio r for uniaxial, elongated particles
rcut Cut-off distance for interaction potential
RRR,R End-to-end vector, end-to-end distance
RRRg,Rg Gyration tensor, radius of gyration
s Dimensionless chain contour position 0 < s < 1
t Time
uuu,uuu j Unit vector(s) tangential to the primitive path (normalized QQQ)
vvv Macroscopic flow field (shear flow vx = γ̇y, vvv = γ̇eee(2) for convenience)
xxxi Position vector of bead i (i = 1 . . .N)
ζl Defined in (11.2) (alignment tensor definition)
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14.5 Greek Symbols

α.. Ericksen-Leslie (EL) viscosity coefficients
αn

l j Coefficients (11.33) of the coupled moment equations (11.26)
β β = (kBT )−1

γ.. EL rotational viscosity coefficients
γγγ Symmetric part of the velocity gradient ∇v
γ̇ Shear rate
Γ Dimensionless shear rate
∆ Laplace-Operator (∆ = ∇∇∇ ·∇∇∇)
∆∆∆ (l,k,l) Isotropic tensor, cf. (10.14). ∆∆∆ (l) ≡ ∆∆∆ (l,0,l).
δi j Kronecker symbol δi, j ≡ 1 (i = j) and 0 otherwise
ε Characteristic energy of the Lennard–Jones and WCA potentials
εεε Total antisymmetric tensor of rank three
ζ Friction coefficient
η Shear viscosity
η ′ (η ′′) Real (negative imaginary) part of the complex viscosity η∗ = η ′ − iη ′′

η∗ Complex (shear) viscosity
η1,2,3 Miesowicz viscosities (1: flow, 2: gradient, 3: vorticity direction)
κκκ Transposed macroscopic velocity gradient (∇vvv)T

λ Tumbling parameter or relaxation time (depends on context)
Λ Eigenvalue
λmax Defined in (4.16)
ξ Parameter for the coarse-graining from atomistic to tapeworm

(Sect. 8.10.1)
ρ Volume density
σ Characteristic length of the Lennard–Jones and WCA potentials
σxy Shear stress
σσσ Stress tensor
τ Relaxation time (sometimes labeled by a model)
φ Concentration
χ Flow alignment angle
Ψ1 (Ψ2) 1st (2nd) viscometric function
f Configurational distribution function
ωωω,ωωω f Macroscopic flow vorticity (∇× vvv)/2
ω Oscillation frequency
ΩΩΩ Antisymmetric part of the velocity gradient ∇v
ζl Coefficient defined in (11.2)

14.6 Caligraphic Symbols

LFP Differential operator characterizing the Fokker–Planck equation
D.. Damping term entering the Fokker–Planck equation
LLLL Angular operator LLLL = u×∂/∂uuu
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14.7 FENE Models

Table 14.1. Recommended nomenclature for finitely extendable nonlinear elastic (FENE)
models (for dilute/concentrated solutions, melts, etc., cf. Fig. 1.3). Models based on the Peter-
lin approximation should carry a ‘P’, models for branched macromolecules should be suffixed
by the maximum functionality considered (for linear chains, n = 2, it is understood that the
suffix 2 is skipped). Many of the proposed simulation models have not been extensively stud-
ied, and analytic approaches such as FENE-Pn (Peterlin approximation for branched FENE
chains) are missing

Model For Finitely Extendable .. Reference

simulation (linear or branched chains) NEMD/NEBD

FENE linear flexible classical polymers incl. dumbbells (N = 2) [59] or (2.1)

FENE-n branched flexible classical polymers, incl. H-shaped (maxi-
mum functionality n = 3), star polymers (n > 3)

[59] or (2.1)

FENE-B linear semiflexible (B for ‘bend’) classical polymers, actin
filaments

(5.33)

FENE-Bn branched FENE-B, maximum functionality n, semiflexible
classicial networks

(5.33)

FENE-C FENE which allows for unimolecular scission and recom-
bination (C for ‘cut’), wormlike micelles, equilibrium poly-
mers

[29] or (5.18)

FENE-Cn FENE-C, maximum functionality n, living flexible and sat-
urated networks

[29] or (5.18)

FENE-CB semiflexible FENE-C, associative polymer networks (5.32)

FENE-CBn semiflexible FENE-Cn, living semiflexible non-saturated
networks

(5.32)

theory (linear chains), approximate constitutive equation

FENE-P (P for ‘Peterlin) appoximation for FENE dumbbells, second
moment as single state variable

[60, 78, 79]

FENE-P2 Second-order Peterlin model [35]
FENE-PM Small set of equations approximating FENE-P chains [69, 426]

FENE-PCR also known as FENE-CR, Peterlin approximation plus a
non-constant diffusion coefficient

[427]

FENE-PCD also known as FENE-CD, Peterlin approximation plus a
configuration dependent diffusion coefficient

[428]

FENE-L Second-order L-shaped closure model for FENE chains [35]

FENE-LS Simplified version of FENE-L [429]

FENE-PMF FENE-P supplemented by a mean-field (MF) interaction
term modeling concentration effects

[80], Sect. 2.1
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14.8 Gaussian Integrals

Gaussian integrals over the infinite three-dimensional space arise at several places in
the text. Let α be a real positive number, ααα a positive-definite, 2nd order tensor, and
both ααα and βββ symmetric.

∫
e−αr2

d3r =
(π

α

)3/2
, (14.1)

∫
1
r

e−αr2
d3r =

2π
α

, (14.2)

∫
e−(ααα :rrrrrr) d3r =

π3/2
√

detααα
, (14.3)

∫
1
r3 rrrrrr e−αr2

d3r =
2π
3α

111 , (14.4)
∫

e−αr2−β (rrr·sss) d3r =
(π

α

)3/2
e

(β s)2
4α , (14.5)

∫
e−(ααα :rrrrrr)−(βββ :rrrsss) d3r =

π3/2
√

detααα
e

1
4 (ααα−1·βββ 2

):ssssss . (14.6)

By making use of the identity

d
dααα

detααα = ααα−1 detααα , (14.7)

we obtain, by differentiation of (14.3) with respect to ααα ,

∫
rrrrrr e−(ααα :rrrrrr) d3r = − d

dααα

∫
e−(ααα :rrrrrr) d3r =

π3/2ααα−1

2
√

detααα
,

(14.8)

and so on for tensors of arbitrary rank. Further, for rrr ∈ ℜn, in (14.3) we have to
replace π3/2 by πn/2. Notice, that Gaussian integrals over the unit sphere (d2u), cf.
(10.68), are more difficult to compute (involve Bernoulli integrals), the above formu-
las hold for integration over ℜ3.
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159. S. Hess and M. Kröger, Phys. Rev. E 61 (2000) 4629.
160. S. Hess, in: Computational Physics, K.H. Hoffmann and M. Schreiber (ed) (Springer,

Berlin, 1996) pp. 268–293.
161. G.S. Grest, B. Dünweg and K. Kremer, Comput. Phys. Commun. 55 (1989) 269.
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290. M. Laso, M. Picasso and H.C. Öttinger, AIChE Journal 43 (1997) 877.
291. M. Abramowitz and I.A. Stegun, NBS Handbook of mathematical functions (Washington

D.C., 1964) 804.
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376. V.G. Mavrantzas and H.C. Öttinger, Macromolecules 35 (2002) 960.
377. V.A. Harmandaris, V.G. Mavrantzas, D.N. Theodorou, M. Kröger, J. Ramirez, H.C.
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